ROS-OPENTELEMETRY

End-to-End Telemetry for Robotics



ABOUT ME

» Lead Software & Robotics Engineer at Circu Li-ion
» Open-source Contributor



ROS IS A DISTRIBUTED SYSTEM

"ROS was invented at the moment when micro-services architecture was a hype."
Guillaume Binet, Founder @ Copper Robotics



» ROS Node == MicroService
» DDS == Communication Layer
» How people handle it?



DISTRIBUTED TRACING

Traces give us the big picture of what happens when a request is made to an
application.

Whether your application is a monolith with a single database or a
sophisticated mesh of services, traces are essential to understanding the full
“path” a request takes in your application.

- opentelemetry.io



@ Explorer ¥ Views v Old Trace Details

@
Span Details
) € A Trace ID 151a9d312e192526¢2a6dd1321¢31312 Total Spans Error Spans - o
a »8 supervisor — run_recipe ® 507 mins 3 Nov 14, 2025 —16:22:42 101 4 SEANIHAME
execute_on_plc
A ¥ Flamegraph
= SPAN ID
= 5 : 3adb6e8a2436bf07
Sl T —
1] | D S START TIME
W perception « 0.55% |
& . ./ ] Nov 14, 2025 —16:23:59
B plc.beckhoff - 97.27%
DURATION
a8 H robot.kuka . 17.63%
3.77 mins
- skill_manager - 93.18%
. SERVICE
B supervisor - 100% om 1m 2m 3m 4m 5.07m
i} . : : : : : plc.beckhoff
L SPAN KIND
S Internal
| skill_manager 166.39 ms
S L@ attach_object_tool_bit SEMUSICUBELSTRING
A | skill_manager 53.82 ms Error
—— > B7 robot_step_execution
gk robot.kuka Go to related logs
] —— ¥ 2 plc_step_execution [ Atiributes % Events Q
plc.beckhoff —_—
A — '@ execute_on_plc container.id
L]
® | plc.beckhoff 377 m €2745b6b028e951085307f00b699dca...
—— > 2 plc_step_execution os.type
plc.beckhoff .
linux

Diassembly request going though our system



CORRELATED LOGS

Correlating traces and logs allows you to investigate issues by navigating from a
specific spanin a trace directly to the logs that were generated during that

operation.
This makes debugging faster and more intuitive by providing the exact context

needed to understand an error or performance problem.
- datadoghg.com



@ Explorer W Views = Old Trace Details

(9

« A Trace D 9973e07898cbc3596c3cedf018eeesbe Total Error SPAN ID
@ Spans Spans
g fobottask prod _ sendtarg . 199 . Oct1l,2025- 13 1 fonfaziendsass7y
[=] ucer ets 5 14:32:09 START TIME
il
Oct 11, 2025 — 14:32:24 ]
A € Flamegraph QK
a DURATION o I
RIS CEES  5.02 s
i S S
= robot_control - 59.98% D ] SERVICE
B robot_task_producer 100% * robot_control =
B8 SPAN KIND .
= Internal B
O0s 35 65 95 12s 155 1880 =
m L | 1 1 1 1 L STATUS CODE STRING >
8 All Spans
8 ||
£ execute pra— a !
A | robot_control 5.59 5 —_— =l B 2
> 3 plan_and_execute pr— service.name
i | robot_control 522 robot_control
M | *> 8 plan_and_execute - signoz.collector.id
| robot_control 4.01s
o -c1d7-4404-ab7d-80c7{4bb...

.

« = exploring an error -
| v

Selecting a trace marked with error



(@ Explorer @y Pipelines W Views

30D :
o Y Filters for A o= @ B Frequency chart @) o
~

30
_ Stage & Run Q
A &

=2 R |trace_id IN 997220789.., |
INFO
1l
WARN 10 .
> Environment 0 npy”
14:32.00 &
> Service Name T

® INFO @ ERROR

> Hostname [
2 st view Time series Table B T

> KBs Cluster Name

' 2025-10-11 14:32:29 845 | robot_task_producer | Completed: success=False, statuses=[True, True, True, False]
el | 2025-10-11 14:32:29.844 | robot_task_producer | Feedback: current_target id=3 status=False
> KB8s Deployment Name | 2025-1@-11 14:32:20.843 | robot_control | Finished processing of <d> targets - . -y . /
& 2025-10-11 14:32:29.843 | robot_control | Planning failed: FAILURE, target_id: <3, pose: Position: 2 B2 | P / F i
o —
T o n 1 (@, @, -e. 75, 8. -
> KB8s Namespace Name @.796798, 0.594B52), Orientation: (@, @, -@ MB&S @.999163) ’ )
l 2025-108-11 14:32:24.824 | robot_task_producer | edback: current_target_id=2 status=True — Vs T —
4 | 2025-108-11 14:32:20.815 | robot_task_producer | Feedback: current_target.id=1 status=True Pa
> K8s Pod Name | 2025-10-11 14:32:15.594 | robot_task_producer | Feedback: current_target.ids@ statussTrue :
¥ | 2025-10-11 14:32:09.959 | robot_control | Processing <4> targets —
| 2025-10-11 14:32:09.958 | robot_task_producer | Sending 4 targets to robot_control )
M =
-1 -

- exploring related logs .. .. |~

Exploring correlated logs



METRICS

"A measurement captured at runtime."
- opentelemetry.io



(O] Overview ~

@ CPUUsed (O Memory Used (Excluding cache/... Disk io (bytes transferred) Network 10 (bytes)
A 14.6 % 42.2 % 5.67 miB 1.09«iB
2

Resources ~

&
CPU Usage Memory Usage
S S 7.45 GiB
D — e e —
) —te
80% 5.59 GiB
FAN 60%
373 GiB
5 40%
1.86 GiB
a 20%
—_— e — — ———
o 0% — — 0B
+
-~ 16:05 16:10 16:15 16:05 16:10 16:15
11/16/25 11/16/25
®
O idle user O system O nice O wait O softirg O interrupt | O used O cached O buffered O slab reclaimable O free |

no more ssh/htop to remote machine



WHY OPENTELEMETRY?

» An observability framework and toolkit designed to facilitate the Generation,
Export, Collection of traces, metrics, and logs.

» Open source, Vendor- and tool-agnostic

» Steered by Cloud Native Computing Foundation / Linux Foundation



vendors supporting opentelemetry protocol



Vendors
Wand o, weo —atwely wpears Dpss Tssmestny

D L s corme Dows ey sy e DL chm comrmiin badnc and cEmeasi Sps
SorM ST EEel 2raed = . ST MRS TE T RIS e o o

Dipary Lzares 000 reiert 12 5 vendor wha M ae sowervisiiny Brous T i soee loorey - T Endor muy il e DU Srosietnn U BT SoNad RUrTE Rt G Sl ofenng s

Organizmian] Commmarcial Mathn OTLF  Laae more

Sgucha Tora o sz

Scucha Sylaiurg peaitng sakhaog -
dor Bmesha i _'C
[0 T ol
dan im0

msbraceial_H

Fabeaca’_ U

Wik aaciced o)

AR T S R T T

|

raim i At o mrbor oo U

Sory ariwcom.

HUHRURTE

mwncinslcony U

N N AN AN AN NN AN AN AN AN AN AN AN AN AN AN AN NN AN AN AN BN AN AN N BN AN AN N AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN
SN SN AN AN AN BN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AR AN AN AN AN AN AN BN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AR AN AN AN AN AN
FfFFE§FFFEFEE iR FgFFsFifgegddFieFegddFieFegiiifiegfsinggnegr

Uy

oy Smsroste o L



AN AN AN BN AN AN AN AN AN AN AN BN AN AN AN AN AN |
f § F §f F ffF @ FodFfFdFfFdffFfFq

[ § § § § §F § F F 8§ ¢F ¢ fF§FFFF

S il




ROS2 X OPENTELEMETRY = ROS-OPENTELEMETRY



&) github.com

[0 README &8 License V4

, ROS2 OpenTelemetry Integration
Library

A production-grade integration library for instrumenting ROS2 (Robot
Operating System 2) applications with OpenTelemetry distributed
tracing and observability capabilities. This project provides a
comprehensive toolchain for building, deploying, and monitoring

ROS2 workspaces with native OpenTelemetry support for both C++
and Python nodes.

0 wv localhost

a @ Explorer W Views

@ € A Trace ID cbb350d36fc22B96daf3df0d9f2d78a1

a8 2 robot_task_producer — send_targets & 21.4s  [@ Oct12, 2025-15:18:112 15

link 3




INSTRUMENTING YOUR CODE



MESSAGE INTERFACE

# Goal
RobotTarget[] targets

ros opentelemetry interfaces/TraceMetadata trace metadata # <--
trace interface "~ -

# Result

bool success

Qool[] targets status

# Feedback _

uint32 current target id

bool status -

<depend>ros_opentelemetry interfaces</depend>



SETTING UP TRACER

#include "ros opentelemetry cpp/ros opentelemetry cpp.hpp"

std::string otl rpc endpoint = "hostname-of-your-otel-
collec’cor:ﬂ317”l;3_g Pe_ P Y

ros _opentelemetry cpp::setup tracer("robot control",
otlp grpc _endpoin®);

from ros opentelemetry py import setup tracer

# somewhere at the start of your node
if name_ == " main_":

~# Expects environmént variable OTLP ENDPOINT set
setup tracer("robot task producer")™



TRACING CODE

#include <opentelemetry/trace/span.h>
#include <opentelemetry/trace/tracer.h>
#include <opentelemetry/trace/provider.h>
#include <opentelemetry/trace/scope.h>

auto tracer =

opentelemetry: :trace: :Provider::GetTracerProvider()->GetTracer(
"name of your component");
auto span = tracer-—

?Start pan("handleActionOrServiceOrOtherCallback");

auto target span = tracer->StartSpan("nested span");
opentelemetry::trace::Scope scope(span);
// your code



from opentelemetry import trace
tracer: trace.Tracer = trace.get tracer(_name )

tracer.start as current s%an("method of your node")
ef method of your node(self, params)



INJECTING TRACE CONTEXT

from ros opentelemetry py import inject trace context

example msg = ExampleActionMessage.Goal()
example msg.trace metadata = inject trace context()



EXTRACTING TRACE CONTEXT

#include <opentelemetry/context/runtime context.h>

const auto goal = goal handle->get goal();
auto extracted ctx =

ros opentelemetry cpp::extract trace context(&goal-
>trace metadata);

[ [maybe unused]] auto ctx token =

opentelemetry::context: :RuntimeContext: :Attach(extracted ctx);



CORRELATING LOGS

RCLCPP ERROR TRACED(this->get logger(), "logger")

from ros opentelemetry py import wrap logger
self. traced logger = wrap logger(self.get logger())



COLLECTING & EXPORTING LOGS

receivers:
filelog:
include: ["/opt/logs/**/* log"]
start_at: end
multitine:
line start pattern: 'A\[\w+\{ NND+\A\D+H\] \[.*\]:" # To
support cases when we output multiline json
operators
- type: regex arser
gT P<level>\w+)\] \E(7P<t1mestamp>\d+\ Ad+)\] \
[(?P<source>[~\1]+)\]: (7P<message>.*)$"
timestamp:
arse from: attributes.timestamp
ayout type epoch
layout™ ns”
severity:
parse_ from: attributes.level
- type: regex parser
parse from: attributes.message
egext '~(?:\[trace id=(7P<trace id>[0-9a-f]
{32})\S+span id= (?P<span 1d>[0-9a-f]{16})\]\s*)?(?P<body>.*)$"



DEMO EXAMPLE

# To run example telemetry setup
just docker-up-telemetry

# Run example
just docker-up-example



THANKS FOR LISTENING

» linkedin/szobovdev
» github/szobov
» blog.szobov.ru



http://0.0.0.0:5252/linkedin.com/in/szobovdev/
http://0.0.0.0:5252/github.com/szobov
http://0.0.0.0:5252/blog.szobov.ru/

