ROS-OPENTELEMETRY

End-to-End Telemetry for Robotics



ABOUT ME

» Lead Software & Robotics Engineer at Circu Li-ion
» Open-source Contributor



ROS IS A DISTRIBUTED SYSTEM

"ROS was invented at the moment when micro-services architecture was a hype."
Guillaume Binet, Founder @ Copper Robotics



» ROS Node == MicroService
» DDS == Communication Layer
» How people handle it?



DISTRIBUTED TRACING

Traces give us the big picture of what happens when a request is made to an
application.

Whether your application is a monolith with a single database or a
sophisticated mesh of services, traces are essential to understanding the full
“path” a request takes in your application.

- opentelemetry.io
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CORRELATED LOGS

Correlating traces and logs allows you to investigate issues by navigating from a
specific spanin a trace directly to the logs that were generated during that

operation.
This makes debugging faster and more intuitive by providing the exact context

needed to understand an error or performance problem.
- datadoghg.com
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METRICS

"A measurement captured at runtime."
- opentelemetry.io
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WHY OPENTELEMETRY?

» An observability framework and toolkit designed to facilitate the Generation,
Export, Collection of traces, metrics, and logs.

» Open source, Vendor- and tool-agnostic

» Steered by Cloud Native Computing Foundation / Linux Foundation



vendors supporting opentelemetry protocol
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ROS2 X OPENTELEMETRY = ROS-OPENTELEMETRY



&) github.com

[0 README &8 License V4

, ROS2 OpenTelemetry Integration
Library

A production-grade integration library for instrumenting ROS2 (Robot
Operating System 2) applications with OpenTelemetry distributed
tracing and observability capabilities. This project provides a
comprehensive toolchain for building, deploying, and monitoring

ROS2 workspaces with native OpenTelemetry support for both C++
and Python nodes.
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INSTRUMENTING YOUR CODE



MESSAGE INTERFACE

# Goal
RobotTarget[] targets

ros opentelemetry interfaces/TraceMetadata trace metadata # <--
trace interface "~ -

# Result

bool success

Qool[] targets status

# Feedback _

uint32 current target id

bool status -

<depend>ros_opentelemetry interfaces</depend>



SETTING UP TRACER

#include "ros opentelemetry cpp/ros opentelemetry cpp.hpp"

std::string otl rpc endpoint = "hostname-of-your-otel-
collec’cor:ﬂ317”l;3_g Pe_ P Y

ros _opentelemetry cpp::setup tracer("robot control",
otlp grpc _endpoin®);

from ros opentelemetry py import setup tracer

# somewhere at the start of your node
if name_ == " main_":

~# Expects environmént variable OTLP ENDPOINT set
setup tracer("robot task producer")™



TRACING CODE

#include <opentelemetry/trace/span.h>
#include <opentelemetry/trace/tracer.h>
#include <opentelemetry/trace/provider.h>
#include <opentelemetry/trace/scope.h>

auto tracer =

opentelemetry: :trace: :Provider::GetTracerProvider()->GetTracer(
"name of your component");
auto span = tracer-—

?Start pan("handleActionOrServiceOrOtherCallback");

auto target span = tracer->StartSpan("nested span");
opentelemetry::trace::Scope scope(span);
// your code



from opentelemetry import trace
tracer: trace.Tracer = trace.get tracer(_name )

tracer.start as current s%an("method of your node")
ef method of your node(self, params)



INJECTING TRACE CONTEXT

from ros opentelemetry py import inject trace context

example msg = ExampleActionMessage.Goal()
example msg.trace metadata = inject trace context()



EXTRACTING TRACE CONTEXT

#include <opentelemetry/context/runtime context.h>

const auto goal = goal handle->get goal();
auto extracted ctx =

ros opentelemetry cpp::extract trace context(&goal-
>trace metadata);

[ [maybe unused]] auto ctx token =

opentelemetry::context: :RuntimeContext: :Attach(extracted ctx);



CORRELATING LOGS

RCLCPP ERROR TRACED(this->get logger(), "logger")

from ros opentelemetry py import wrap logger
self. traced logger = wrap logger(self.get logger())



COLLECTING & EXPORTING LOGS

receivers:
filelog:
include: ["/opt/logs/**/* log"]
start_at: end
multitine:
line start pattern: 'A\[\w+\{ NND+\A\D+H\] \[.*\]:" # To
support cases when we output multiline json
operators
- type: regex arser
gT P<level>\w+)\] \E(7P<t1mestamp>\d+\ Ad+)\] \
[(?P<source>[~\1]+)\]: (7P<message>.*)$"
timestamp:
arse from: attributes.timestamp
ayout type epoch
layout™ ns”
severity:
parse_ from: attributes.level
- type: regex parser
parse from: attributes.message
egext '~(?:\[trace id=(7P<trace id>[0-9a-f]
{32})\S+span id= (?P<span 1d>[0-9a-f]{16})\]\s*)?(?P<body>.*)$"



DEMO EXAMPLE

# To run example telemetry setup
just docker-up-telemetry

# Run example
just docker-up-example



THANKS FOR LISTENING

» linkedin/szobovdev
» github/szobov
» blog.szobov.ru
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