
ROS-OPENTELEMETRY

End‑to‑End Telemetry for Robotics

ABOUT ME

Lead Software & Robotics Engineer at Circu Li-ion

Open-source Contributor

ROS IS A DISTRIBUTED SYSTEM

"ROS was invented at the moment when micro-services architecture was a hype."

Guillaume Binet, Founder @ Copper Robotics

ROS Node == MicroService

DDS == Communication Layer

How people handle it?

DISTRIBUTED TRACING

Traces give us the big picture of what happens when a request is made to an

application.

Whether your application is a monolith with a single database or a

sophisticated mesh of services, traces are essential to understanding the full

“path” a request takes in your application.

- opentelemetry.io

Diassembly request going though our system

CORRELATED LOGS

Correlating traces and logs allows you to investigate issues by navigating from a

specific span in a trace directly to the logs that were generated during that

operation.

This makes debugging faster and more intuitive by providing the exact context

needed to understand an error or performance problem.

- datadoghq.com

Selecting a trace marked with error

Exploring correlated logs

METRICS

"A measurement captured at runtime."

- opentelemetry.io

no more ssh/htop to remote machine

WHY OPENTELEMETRY?

An observability framework and toolkit designed to facilitate the Generation,

Export, Collection of traces, metrics, and logs.

Open source, Vendor- and tool-agnostic

Steered by Cloud Native Computing Foundation / Linux Foundation

vendors supporting opentelemetry protocol

ROS2 X OPENTELEMETRY = ROS-OPENTELEMETRY

INSTRUMENTING YOUR CODE

MESSAGE INTERFACE

Goal

RobotTarget[] targets

ros_opentelemetry_interfaces/TraceMetadata trace_metadata # <--
trace interface

\---

Result
bool success

bool[] targets_status
\---

Feedback

uint32 current_target_id
bool status

 <depend>ros_opentelemetry_interfaces</depend>

SETTING UP TRACER

#include "ros_opentelemetry_cpp/ros_opentelemetry_cpp.hpp"

std::string otlp_grpc_endpoint = "hostname-of-your-otel-

collector:4317";
ros_opentelemetry_cpp::setup_tracer("robot_control",

otlp_grpc_endpoint);

from ros_opentelemetry_py import setup_tracer

somewhere at the start of your node

if __name__ == "__main__":

 # Expects environment variable OTLP_ENDPOINT set
 setup_tracer("robot_task_producer")

TRACING CODE

#include <opentelemetry/trace/span.h>

#include <opentelemetry/trace/tracer.h>
#include <opentelemetry/trace/provider.h>

#include <opentelemetry/trace/scope.h>

auto tracer =
opentelemetry::trace::Provider::GetTracerProvider()->GetTracer(

 "name_of_your_component");
auto span = tracer-

>StartSpan("handleActionOrServiceOrOtherCallback");

{

 auto target_span = tracer->StartSpan("nested_span");
 opentelemetry::trace::Scope scope(span);

 // your code

}

from opentelemetry import trace

tracer: trace.Tracer = trace.get_tracer(__name__)

@tracer.start_as_current_span("method_of_your_node")

def method_of_your_node(self, params):

 ...

INJECTING TRACE CONTEXT

from ros_opentelemetry_py import inject_trace_context

example_msg = ExampleActionMessage.Goal()

example_msg.trace_metadata = inject_trace_context()

EXTRACTING TRACE CONTEXT

#include <opentelemetry/context/runtime_context.h>

const auto goal = goal_handle->get_goal();

auto extracted_ctx =
ros_opentelemetry_cpp::extract_trace_context(&goal-

>trace_metadata);

[[maybe_unused]] auto ctx_token =

opentelemetry::context::RuntimeContext::Attach(extracted_ctx);

CORRELATING LOGS

RCLCPP_ERROR_TRACED(this->get_logger(), "logger")

from ros_opentelemetry_py import wrap_logger

self._traced_logger = wrap_logger(self.get_logger())

COLLECTING & EXPORTING LOGS

receivers:

 filelog:
 include: ["/opt/logs/**/*.log"]

 start_at: end
 multiline:

 line_start_pattern: '^\[\w+\] \[\d+\.\d+\] \[.*\]:' # To

support cases when we output multiline json
 operators:

 - type: regex_parser
 regex: '^\[(?P<level>\w+)\] \[(?P<timestamp>\d+\.\d+)\] \

[(?P<source>[^\]]+)\]: (?P<message>.*)$'

 timestamp:
 parse_from: attributes.timestamp

 layout_type: epoch
 layout: "s.ns"

 severity:

 parse_from: attributes.level
 - type: regex_parser

 parse_from: attributes.message
 regex: '^(?:\[trace_id=(?P<trace_id>[0-9a-f]

{32})\s+span_id=(?P<span_id>[0-9a-f]{16})\]\s*)?(?P<body>.*)$'
...

DEMO EXAMPLE

To run example telemetry setup

just docker-up-telemetry

Run example
just docker-up-example

THANKS FOR LISTENING

linkedin/szobovdev

github/szobov

blog.szobov.ru

Speaker notes

http://0.0.0.0:5252/linkedin.com/in/szobovdev/
http://0.0.0.0:5252/github.com/szobov
http://0.0.0.0:5252/blog.szobov.ru/

