
soar_ros: A ROS 2 Interface for the 
Cognitive Architecture Soar

Moritz Schmidt



Agenda

What is Soar?

Soar & ROS 2: Challenges and Requirements

Mapping Soar to ROS 2 communication

Preliminary Performance Evaluation

What’s next?



What is Soar?

Definition of Soar

Soar is a general cognitive architecture

for developing systems that exhibit

intelligent behavior.

Input

Proposal

Decision

Application

Output

Rule-based system (white box)

Chunking (New rule generation based on impasse)

RL capabilities

Open Source (UoM, CIC)



Soar & ROS 2: Challenges and Requirements

Soar synchronous architecture blocks ROS 2

Run Soar agents during time consuming tasks in ROS

Time of ROS2 message != Soar input phase

Fixed callback interfaces for ROS 2 and Soar

Challenges

Soar Kernel runs continuously

Add ROS 2 interfaces via builder pattern

Only parsing of Soar WMEs and ROS 2 messages by dev

Debug

Support Soar Java Debugger

Hook into VS Code ROS 2 debug tooling

Stop kernel via ROS 2 messages

Full ROS Tooling integration (logging, debug)

No maintenance of additional Soar fork

Requirements



How to use?

Example Code



How to use?

Example Code



How to use?

Example Code



Application 

https://www.linkedin.com/embed/feed/update/urn:li:ugcPost:7360694604980989953?compact=1


Preliminary Performance Evaluation

Sender publishes std_msgs::msg::Headermessages to the input topic at configurable frequencies. Use frame_id as counter

System node copies input messages to output

Receiver subscribes to the output topic and logs received messages with timestamps.

SISO

Sender
System
soar_ros

Receiver



Preliminary Performance Evaluation

SISO



Conclusion

Threading managed in the background. Not exposed to API/ interface.

ROS 2 → Soar parsing is the only required implementation

High Code reusability due to templates and generics



What’s next?

Launch tests fail in CI due to bad shutdown (zombie process); but only in combination with launch testing

Multi-input/ multi-output performance tests

Extension for common ROS 2 message definition parsing between ROS 2 and Soar

Packaging & addition to ROS apt repository via build farm

Probably requires packaging of Soar base library (currently via Cmake FetchContent_Declare)



Links

Soar Documentation soar_ros GitHub Project @ THA (update will 
follow 12/2025)



Moritz Schmidt

Faculty of Electrical Engineering

Research Associate

moritz.schmidt@tha.de

www.tha.de

Technical University of Applied Sciences Augsburg
An der Hochschule 1
D-86161 Augsburg
T +49 821 5586 1010
moritz.schmidt@tha.de
www.tha.de

mailto:moritz.schmidt@tha.de
http://www.tha.de/


ROS 2 Communication applied to Soar

Publisher: Soar output[topic]

Subscriber: Soar input[topic]

Service: Soar input[topic] → process →
Soar output[topic]

Client: Soar output → wait for answer 
→ Soar input[topic]

Server: Not implemented

Client: Implemented[topic]

Pub/Sub Services Actions

Defined via message type (pub/sub, service, action), name (topic) and quality of service (QoS)



Theoretical Example

Client



Theoretical Example

Client



Theoretical Example

Client



Theoretical Example

Client Example



Theoretical Example

Client


	Slide 1: soar_ros: A ROS 2 Interface for the Cognitive Architecture Soar
	Slide 2: Agenda
	Slide 3: What is Soar?
	Slide 4: Soar & ROS 2: Challenges and Requirements
	Slide 5: How to use?
	Slide 6: How to use?
	Slide 7: How to use?
	Slide 8: Application 
	Slide 9: Preliminary Performance Evaluation 
	Slide 10: Preliminary Performance Evaluation 
	Slide 11: Conclusion
	Slide 12: What’s next?
	Slide 13: Links
	Slide 14
	Slide 15: ROS 2 Communication applied to Soar
	Slide 16: Theoretical Example
	Slide 17: Theoretical Example
	Slide 18: Theoretical Example
	Slide 19: Theoretical Example
	Slide 20: Theoretical Example

