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What is Soar?

Definition of Soar

Soar is a general cognitive architecture

for developing systems that exhibit

intelligent behavior.

Input

Proposal

Decision

Application

Output

Rule-based system (white box)

Chunking (New rule generation based on impasse)

RL capabilities

Open Source (UoM, CIC)



Soar & ROS 2: Challenges and Requirements

Soar synchronous architecture blocks ROS 2

Run Soar agents during time consuming tasks in ROS

Time of ROS2 message != Soar input phase

Fixed callback interfaces for ROS 2 and Soar

Challenges

Soar Kernel runs continuously

Add ROS 2 interfaces via builder pattern

Only parsing of Soar WMEs and ROS 2 messages by dev

Debug

Support Soar Java Debugger

Hook into VS Code ROS 2 debug tooling

Stop kernel via ROS 2 messages

Full ROS Tooling integration (logging, debug)

No maintenance of additional Soar fork

Requirements



How to use?

Example Code
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Example Code



Application 

https://www.linkedin.com/embed/feed/update/urn:li:ugcPost:7360694604980989953?compact=1


Preliminary Performance Evaluation

Sender publishes std_msgs::msg::Headermessages to the input topic at configurable frequencies. Use frame_id as counter

System node copies input messages to output

Receiver subscribes to the output topic and logs received messages with timestamps.

SISO

Sender
System
soar_ros

Receiver



Preliminary Performance Evaluation

SISO



Conclusion

Threading managed in the background. Not exposed to API/ interface.

ROS 2 → Soar parsing is the only required implementation

High Code reusability due to templates and generics



What’s next?

Launch tests fail in CI due to bad shutdown (zombie process); but only in combination with launch testing

Multi-input/ multi-output performance tests

Extension for common ROS 2 message definition parsing between ROS 2 and Soar

Packaging & addition to ROS apt repository via build farm

Probably requires packaging of Soar base library (currently via Cmake FetchContent_Declare)



Links

Soar Documentation soar_ros GitHub Project @ THA (update will 
follow 12/2025)
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ROS 2 Communication applied to Soar

Publisher: Soar output[topic]

Subscriber: Soar input[topic]

Service: Soar input[topic] → process →
Soar output[topic]

Client: Soar output → wait for answer 
→ Soar input[topic]

Server: Not implemented

Client: Implemented[topic]

Pub/Sub Services Actions

Defined via message type (pub/sub, service, action), name (topic) and quality of service (QoS)



Theoretical Example

Client
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Theoretical Example
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