soar ros: A ROS 2 Interface for the
Cognitive Architecture Soar

Moritz Schmidt



Agenda

/

A

A

/

A

What is Soar?

Soar & ROS 2: Challenges and Requirements

Mapping Soar to ROS 2 communication

Preliminary Performance Evaluation

What’s next?

THPw



What is Soar?

(

-

\

Definition of Soar

Soar is a general cognitive architecture
for developing systems that exhibit

intelligent behavior.

/1 Rule-based system (white box)

/1" Chunking (New rule generation based on impasse)

/1 RL capabilities

/1 Open Source (UoM, CIC)

THPw

Output

Application

Decision

Input

Proposal



Soar & ROS 2: Challenges and Requirements

Challenges Requirements

/1" Soar synchronous architecture blocks ROS 2 /1 Soar Kernel runs continuously

/1" Run Soar agents during time consuming tasks in ROS /1" Add ROS 2 interfaces via builder pattern

/1 Time of ROS2 message != Soar input phase /1" Only parsing of Soar WMEs and ROS 2 messages by dev
/1 Fixed callback interfaces for ROS 2 and Soar /1 Debug

/1 Support Soar Java Debugger

/1 Hook into VS Code ROS 2 debug tooling

/1 Stop kernel via ROS 2 messages

/1 Full ROS Tooling integration (logging, debug)

/1 No maintenance of additional Soar fork

THPa



How to use?

Example Code

class TestClient : public So0aR0S::Client<example_interfaces::srv::AddTwoInts>

{

public:
TestClient(sml::Agent * agent, rclcpp::Node::SharedPtr node, const std::string & topic)
: Client<example_interfaces::srv::AddTwoInts>(agent, node, topic) {}
~TestClient() {}

aces::srv::AddTwoInts: :Request::SharedPtr parse(sml::Ident x 1d) override

example_interfaces::srv::AddTwoInts::Request::SharedPtr request =
std::make_shared<examp1e_interfaces::Frv::AddTonnts::Request>():

auto a = std::stoi(id->GetParameterValue("a"));

auto b = std::stoi(id->GetParameterValue("b"));

request.get()->a = a;

request.get()->b = b;

RCLCPP_INFO(m_node->get_logger(), "Request computation: %d + %d", a, b);

rn request;

void parse(example_interfaces::srv::AddTwoInts::Response::SharedPtr msg) override

{
sml::Identifier x il = getAgent()->GetInputLink();
sml::Identifier % pId = il->CreateIdwWME("AddTwoIntsClient");
pId->CreateIntWME("sum", msg.get()->sum);
RCLCPP_INFO(m_node->get_logger(), "Result: %1d", msg.get()->sum);
H



How to use?

Example Code

class TestClient : public So0aR0S::Client<example_interfaces::srv::AddTwoInts>

{

public:
TestClient(sml::Agent * agent, rclcpp::Node::SharedPtr node, const std::string & topic)
: Client<example_interfaces::srv::AddTwoInts>(agent, node, topic) {}
~TestClient() {}

example_interfaces::srv::AddTwoInts: :Request::SharedPtr parse(sml::Identifier % id) override
{
example_interfaces::srv::AddTwoInts::Request::SharedPtr request =
std::make_shared<examp1e_interfaces::Frv::AddTonnts::Request>():
auto a = std::stoi(id->GetParameterValue("a"));
auto b = std::stoi(id->GetParameterValue("b"));
request.get()->a = a;

request.get()->b = b;
RCLCPP_INFO(m_node->get_logger(), "Request computation: %d + %d", a, b);

return request;

void parse(example_interfaces::srv::AddTwoInts::Response::SharedPtr msg) override

{

sml::Identifier x il = getAgent()->GetInputLink();
sml::Identifier % pId = il->CreateIdwWME("AddTwoIntsClient");
pId->CreateIntWME("sum", msg.get()->sum);
RCLCPP_INFO(m_node->get_logger(), "Result: %1d", msg.get()->sum);




int main(int argec, char * argv[])

{
:, rclcpp::init(argc, argv);
How to use:
const std::string package_name = "soaros";
Example Code const std::string share_directory =
ament_index_cpp::get_package_share_directory(package_name);

class TestClient : public So0aR0S::Client<example_interfaces::srv::AddTwoInts>
{ std::string soar_path = share_directory + "/Soar/main.soar";
public: auto node = std::make_shared<SoaR0S: :SoarRunner>("Test Agent", soar_path);

TestClient(sml::Agent * agent, rclcpp::Node::SharedPtr node, const std::string & topic)
: Client<example_interfaces::srv::AddTwoInts>(agent, node, topic) {}
~TestClient() {}

example_interfaces::srv::AddTwoInts: :Request::SharedPtr parse(sml::Identifier % id) override
{
example_interfaces::srv::AddTwoInts::Request::SharedPtr request =
std::make_shared<examp1e_interfaces::Frv::AddTonnts::Request>():
auto a = std::stoi(id->GetParameterValue("a"));
auto b = std::stoi(id->GetParameterValue("b"));

request.get()->a = a;

request.get()->b = b;
RCLCPP_INFO(m_node->get_logger(), "Request computation: %d + %d", a, b);

return request;

void parse(example_interfaces::srv::AddTwoInts::Response::SharedPtr msg) override

{

std::shared_ptr<SoaR0S::Client<example_interfaces::srv::AddTwoInts>> client =
std: :make_shared<TestClient>(node.get()->getAgent(), node, "AddTwoIntsClient");
node->addClient(client, "AddTwoIntsClient");

sml::Identifier * il = getAgent()->GetInputLink();
sml::Identifier % pId = il->CreateIdwWME("AddTwoIntsClient");
pId->CreateIntWME("sum", msg.get()->sum);

RCLCPP_INFO(m_node->get_logger(), "Result: %1d", msg.get()->sum); node->startThread();

cutors: :MultiThreadedExecutor executor;

executor.add_no
executor.spin();
rclcpp: :shutdown();

return 9;



Application

‘*‘

Leveraging Agent-Based Reasoning for

Natural Task Delegation on the Shop Floor


https://www.linkedin.com/embed/feed/update/urn:li:ugcPost:7360694604980989953?compact=1

Preliminary Performance Evaluation

SISO

/1 Sender publishes std msgs: :msg: :Header messages to the input topic at configurable frequencies. Use frame id as counter
/1 System node copies input messages to output

/1 Receiver subscribes to the output topic and logs received messages with timestamps.

System . Recelver

soar ros

THPw



Duration (s)

Preliminary Performance Evaluation

SISO

2.00 —— f=100.0 Hz
—— f=250.0 Hz

L.75 1 —— f=500.0 Hz
—— f=1000.0 Hz

1.50 1 —— f=2000.0 Hz

1.25 -

1.00 -

0.75 -

0.50 -

0.25 -

0.00 - Z -

T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Normalized Receive Time (s)

Duration (s)

2.00 4

L7754

1.50 1

1.25 4

1.00 A

0.75 1

0.50 A

0.25 4

0.00 A

f=100.0 Hz
f=250.0 Hz
f=500.0 Hz
f=1000.0 Hz
f=2000.0 Hz

A/

0

T

250 500 750 1000 1250 1500
Frame ID

1750

2000




Conclusion

/1 Threading managed in the background. Not exposed to API/ interface.
/1 ROS 2 <> Soar parsing is the only required implementation

/1 High Code reusability due to templates and generics

THPw



What’s next?

/1 Launch tests fail in Cl due to bad shutdown (zombie process); but only in combination with launch testing
/1 Multi-input/ multi-output performance tests

/1 Extension for common ROS 2 message definition parsing between ROS 2 and Soar

/1 Packaging & addition to ROS apt repository via build farm

/1" Probably requires packaging of Soar base library (currently via Cmake FetchContent_Declare)

THPa



Links

Soar Documentation soar_ros GitHub Project @ THA (update will
follow 12/2025)

THPa



Technische
Hochschule
Augsburg

Moritz Schmidt

Faculty of Electrical Engineering
Research Associate

Technical University of Applied Sciences Augsburg
An der Hochschule 1

D-86161 Augsburg

T +49 821 5586 1010

moritz.schmidt@tha.de

www.tha.de



mailto:moritz.schmidt@tha.de
http://www.tha.de/

ROS 2 Communication applied to Soar

Defined via message type (pub/sub, service, action), name (topic) and quality of service (QoS)

Pub/Sub Services Actions
Publisher: Soar output[topic] Service: Soar input[topic] = process 2> Server: Not implemented
Soar output[topic]
Subscriber: Soar input[topic] Client: Implemented|topic]

Client: Soar output = wait for answer
- Soar input[topic]

THPw



Theoretical Example

Client

Soar ROS2
SoarRunner Soarkernel SoarAgent ClientinputQueue Client ClientQutputQueue
CreateKernelinNewThread()
RunselfForever()
smIEVENT_AFTER_ALL_OUTPUT_PHASES callback to Updateworld()
Read outputtlink commands
map[command] = queue
push(parse(sml:Identifier *))
dd command status complete
Read all input queues
UpdateWorld() complete
loop [Client run thread]
try read
Element
sent ROSE request
await ROS2 response
future.get()
push(response)
smIEVENT_AFTER_ALL_OUTPUT_PHASES callback to UpdateWorld()
Process joutputs
Read input
Parse ROS to Soar WMEs
Attach tpinput-link
‘ I UpdateWorld() complete
ﬂ L
SoarRunner SoarKernel SoarAgent ClientinputQueue Client ClientOutputQueue




Theoretical Example

Client

THPw

Soar

SoarRunner Soarkermel

CreatekernelinNewThread()

RunselfForever()

SoarAgent

smIEVENT_AFTER_ALL_OUTPUT_PHASES callback to UpdateWorld()

Read output:link commands

map[comma

push(parse(sml:1dentifier *})

T~

ClientinputQueue

dd comrand status complete

Read all in

rid() complete

\

loop
try read
.‘—
Element




Soar ROS2

SoarRunner SoarkKernel SoarAgent ClientinputQueue Client ClientOutputQueue

Theoretical Example

CreateernelinNewThread()

CI ie nt RunSelfForever()

smIEVENT_AFTER_ALL_OUTPUT_PHASES callback to UpdateWorld()

Read outputilink commands

)

map[command] = queue

push{parse(sml:ldentifier *))

/
dd command status complete
Read all input queues
UpdateWorld() complete
loop [Client run thread]
try read
Element

sent ROSZ request
await ROS2 response

>

future.get()

THR =

push(response)

A J




CreateKernelinNewThread()

Theoretical Example RunselfForever()

smIEVEMT_AFTER_ALL_OUTPUT_PHASES callback to UpdateWorld()

CI ie nt Exa m ple Read output:link commands

. O

map[command] = queue

push(parse(sml:1dentifier *})

dd command 3

Read al#hput gueues

UpdateWorld() complete

I I R smIEVEMT_AFTER_ALL_OUTPUT_PHASES callback to UpdateWorld()

0(9# outputs

/

loop

try read

[Client run thread]

F'y

Element

B
L

sent ROS2 request
await ROS2 response
future.get()

>

push(response)

v




TR T AR IR =R

dd command 3

Theoretical Exam|

Client

tatus complete

.

UpdateWorld() complete

try read

loop [Client run thread]

Element

sent RO

await RO

Process joutputs

52 request

52 response

—

THPw

\futu,E .get()
=
push(r 52
smIEVENMT_AFTER_ALL_OUTPUT_PHASES callback to UpdateWorld()
Read input
Parse ROS to Soar WMEs
Attach tpinput-link
UpdateWorld() complete
ﬂ LI
SoarkKernel SoarAgent ClientInputQueue Client

ClientOutpu ue




	Slide 1: soar_ros: A ROS 2 Interface for the Cognitive Architecture Soar
	Slide 2: Agenda
	Slide 3: What is Soar?
	Slide 4: Soar & ROS 2: Challenges and Requirements
	Slide 5: How to use?
	Slide 6: How to use?
	Slide 7: How to use?
	Slide 8: Application 
	Slide 9: Preliminary Performance Evaluation 
	Slide 10: Preliminary Performance Evaluation 
	Slide 11: Conclusion
	Slide 12: What’s next?
	Slide 13: Links
	Slide 14
	Slide 15: ROS 2 Communication applied to Soar
	Slide 16: Theoretical Example
	Slide 17: Theoretical Example
	Slide 18: Theoretical Example
	Slide 19: Theoretical Example
	Slide 20: Theoretical Example

