
ros-controls project update

Denis Stogl, Bence Magyar

Bence Magyar, Denis Štogl, Christoph Froehlich, Sai Kishor
Kothakota, Alejandro Hernández Cordero, Karsten Knese,
Jordan Palacios, Shane Loretz, Dave Coleman, Jaron
Lundwall, Jonathan Bohren, Felix Exner, Victor Lopez, Paul
Gesel, Tyler Weaver, Manuel Muth, Julia Jia, Olivier Stasse,
Soham Patil, Marq Rasmussen, Noel Jiménez García, Reza
Kermani, Silvio Traversaro, Wiktor Bajor, Márk Szitanics,
Andy Zelenak and many more!

Thank you for being

here!

ros-controls Organization

Charter Meetings Repositories Docs

Project charter

CEST

control.ros.orgGitHub ros-controls

https://github.com/openrobotics/osra-policies-and-procedures/blob/main/ros-controls_project_charter.md
https://control.ros.org/
https://github.com/ros-controls/
https://github.com/ros-controls/
https://github.com/ros-controls/

ros-controls Organization

Committers: …

Repositories: …

Strategy:
- Releases
- Versioning
- Public API
- Deprecations

https://control.ros.org/rolling/doc/governance/governance.html

https://control.ros.org/rolling/doc/governance/governance.html

Thanks to our maintainers!

Bence Magyar
– [Dr. Bent’seh]

Denis Štogl
– [Dr. Denis]

*all from different companies

Sai Kishor
Kothakota –
[The Code-
Wizard]

Christoph
Fröhlich
– [Dr.
Christoph]

Code Management Strategy - tl;dr

● We don’t guarantee ABI stability (Rebuild after any upstream package update!).

● We allow code to be deprecated in every release (don’t use -Werror=deprecated-declarations).

● We define the release within a distro “stable” at October 1st after an official distro release. The
goal is that we get the stable release available by ROSCon.

● We still allow API breaks and behavior breaking changes within such stable releases in case of
safety concerns.

● We continually try to give useful hints in the migration guides and deprecation notices.

Did you know? You can always build the rolling version, including the latest features, back on all active
distros!

https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388

https://control.ros.org/rolling/doc/migration/migration.html
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388
https://discourse.openrobotics.org/t/releases-versioning-and-public-api-claim-of-ros-controls/50388

Other perks for your project!

1. ros2_control_ci - reusable CI templates (you can use it too!)

2. ros2_control_cmake - reusable CMake definitions (clean up your files from boilerplate!)

3. Pre-commit (linting and testing are two separate stages!)

4. Documentation is placed next to the code! (Easy to convince people to actually write it!)
Enjoy public stats: https://control.ros.org/rolling/doc/statistics.html

1. Roadmap repository: https://github.com/ros-controls/roadmap (actual design drafts)

2. Repository with demos: https://github.com/ros-controls/ros2_control_demos (reference code)

control.ros.org stats 2025 October (YTD)

Unique visitors: 161k (105k)

Total pageviews: 673k (476k)

Total visits: 202k (144k)

Singapore: 5.2k (compared USA: 24.5k)

https://control.ros.org/rolling/doc/statistics.html
https://github.com/ros-controls/roadmap
https://github.com/ros-controls/roadmap
https://github.com/ros-controls/roadmap
https://github.com/ros-controls/ros2_control_demos
https://github.com/ros-controls/ros2_control_demos
https://github.com/ros-controls/ros2_control_demos
https://github.com/ros-controls/ros2_control_demos
https://github.com/ros-controls/ros2_control_demos

History
pr2_controller_manager

(pr2_mechanism)

2009

ros_control

2012/2017

ros2_control

2017/today

https://control.ros.org/master/doc/supported_robots/supported_robots.html

https://control.ros.org/master/doc/supported_robots/supported_robots.html

Overview of Standard Controllers

Generics
● PID Controller
● Forwarding Controller

○ Forward Command – multiple joints, one interface
○ Multi Interfaces Fwd. Cmd. – one joint, multiple interfaces

● GPIO Command Controller - sends values on set of GPIO interfaces

Mobile Robots - Nav2
● Steering Controllers

○ Bicycle – 1 drive joints, 1 steering joint
○ Tricycle – 2 drive joints, 1 steering joint
○ Ackerman – 2 drive joints, 2 steering joints

● Omni Wheel Drive
● Tricycle controller (1 drive + steering joint)
● Mecanum drive
● Differential Drive (Diff drive) / Skid steer

https://control.ros.org/rolling/doc/ros2_controllers/doc/controllers_index.html

Overview of Standard Controllers

Industrial Robotics (Arms) - MoveIt2
● Joint Trajectory Controller (JTC) - scaled

○ The most used one – interface for MoveIt2 and similar frameworks
● Admittance Controller – force-position control in Cartesian space (using IK library from KDL)
● (Industrial) Motion Primitives Controllers - move LIN, PTP, CIRC

Grippers / Tools
● Parallel Gripper Controller – 1 DoF gripper with position and optionally max vel and max effort interfaces
● GPIO Tool Controller - generic tools and grippers (engaging, disengaging, and configuring)

Not Controllers → Broadcasters
● Joint State Broadcaster – nothing works without it!!!
● Force Torque Sensor Broadcaster

○ Has funky stuff in it, like filtering—cool for using in chain ahead of Admittance Controller
● IMU, GPS, Battery, Range Sensor Broadcaster
● Pose Broadcaster

https://control.ros.org/rolling/doc/ros2_controllers/doc/controllers_index.html

Overview of Hardware Components (Drivers)
MockHardware

https://control.ros.org/rolling/doc/supported_robots/supported_robots.html

Automation / Communication

Non-robot devices

End-effectors

Overview of Hardware Components (Drivers)
MockHardware

https://control.ros.org/rolling/doc/supported_robots/supported_robots.html

Official Robot Drivers From Community

L
ife

c
y
c
le

 e
v
e
ry

w
h
e
re

!

Workshop

● Successful workshops with 100+ people in total at ROSCon and ROSCon UK 2025!

● ESP32 board speaking ROS natively over Zenoh Pico

● Setup via ros2_control & standard controllers

● We () want to push for more embedded support

2025 Workshop repo

Joint Limits Enforcement
● Per joint limits
● Saturation, Range and Soft Limiters
● Joint Limits definitions in URDF
● <ros2_control>-tag for acceleration and jerk
● Available from Jazzy—default “on” from kilted

Limitations
● No sync between robot’s joints → Possible

offsets in the executed trajectory if some
joints are limited

● Jerk limiting is not fully implemented to
influence its “integrals”

Asynchronous Hardware Components

Real-time improvements

● Locking memory, CPU affinity, thread priority
● ros2_control node
● async controllers and HW components
● Monotonic clock in RT loop

Scheduling policy
○ synchronized—CM triggers slower loop when ready
○ detached—independent from CM thread

Diagnostics and Introspection

● /controller_manager/statistics/* topics and /diagnostics topic
○ execution time and periodicity of everything RT related
○ read(), update(), write() for individual controllers and HW components

● /controller_manager/activity topic
○ The latest state of controllers and the hardware components

● /controller_manager/introspection/* topics
○ Contain values handshaked between controllers and HW components

directly
○ Contains information on which interfaces are limited

Being “strict” means being “safer”

● Parameter for overriding default strictness for activating controllers

○ humble, jazzy, kilted—framework default is best-effort

○ rolling—framework default is strict

● Strict is now applied to the whole controllers’ chain
○ any fails → all fail
○ https://github.com/ros-controls/ros2_control/pull/2681

https://github.com/ros-controls/ros2_control/pull/2681
https://github.com/ros-controls/ros2_control/pull/2681
https://github.com/ros-controls/ros2_control/pull/2681
https://github.com/ros-controls/ros2_control/pull/2681

Join us!

● ros2_control presentations
○ https://control.ros.org/master/doc/resources/resources.html

● Github project to guide contributors to where they are most needed
○ https://github.com/orgs/ros-controls/projects/11

Working Group Meetings
every second Wednesday!

Next one is 19th November!

https://control.ros.org/master/doc/resources/resources.html
https://control.ros.org/master/doc/resources/resources.html
https://github.com/orgs/ros-controls/projects/11
https://github.com/orgs/ros-controls/projects/11
https://github.com/orgs/ros-controls/projects/11
https://github.com/orgs/ros-controls/projects/11
https://github.com/orgs/ros-controls/projects/11

	Slide 1: ros-controls project update
	Slide 2
	Slide 3: ros-controls Organization
	Slide 4: ros-controls Organization
	Slide 5: Thanks to our maintainers!
	Slide 6: Code Management Strategy - tl;dr
	Slide 7: Other perks for your project!
	Slide 8
	Slide 10: History
	Slide 11
	Slide 12
	Slide 13: Overview of Standard Controllers
	Slide 14: Overview of Standard Controllers
	Slide 15: Overview of Hardware Components (Drivers)
	Slide 16: Overview of Hardware Components (Drivers)
	Slide 17: Lifecycle everywhere!
	Slide 19: Workshop
	Slide 20
	Slide 21: Joint Limits Enforcement
	Slide 22: Asynchronous Hardware Components
	Slide 23: Real-time improvements
	Slide 24: Diagnostics and Introspection
	Slide 25: Being “strict” means being “safer”
	Slide 26: Join us!

