
Experience and Learnings from Migrating
Our Navigation Stack from ROS1 to ROS2

Speaker: Philipp Schnattinger

N
o

v
e

m
b

e
r 

2
0

2
5

R
O

S
C

o
n

 F
R

 &
 D

E
 2

0
2

5
 -

 K
e

y
n

o
te



Fraunhofer IPA spin-off, established in 2020 and
headquartered in Stuttgart, boasts a dynamic
team of 25 dedicated employees. 

Our remarkable journey has already seen us
deploy our cutting-edge software to power more
than 1,500 mobile robots, revolutionizing various
industries with their productive applications.



We make mobile robots easy to use.



Use Cases in Manufacturing, Logistics,
and Service Robotics

Proven Deployment on 1,500+ Robots in Europe,
Asia, and North America

30+ Mobile Robot Types Supported
with NODE.OS



Hybrid Navigation - Automated Road Map Generation I

Automating the setup phase:

Based on SLAM Map, Point Cloud,
or Layout Map

Considers Robot Properties:
Kinematics, Footprint, Safety Fields

Configurable Traffic Rules
(One-Ways, Driving Side, etc.)



Hybrid Navigation - Automated Road Map Generation II

Automating the setup phase:

Based on SLAM Map, Point Cloud,
or Layout Map

Considers Robot Properties:
Kinematics, Footprint, Safety Fields

Configurable Traffic Rules
(One-Ways, Driving Side, etc.)



Agenda

ROS”1" Navigation01

ROS2 - Let’s make things better02

DDS - Are we too dumb or is it a problem03



NODE Stack Evolution Over Time

Incorporation of
NODE Robotics
in Stuttgart

2020 2021

Make Robots easy to use
and add our own UI

2024

Running everything
in Jazzy

2013

Starting as
Fraunhofer IPA
Research team in
mobile robot
navigation

2015

First SLAM-based
AGV in automotive
assembly at AUDI
plant

Credit: Bär Automation

2018

BMW collaboration
and first rollout of
BMWs ‘STR’ running
with NODE
navigation

Credit: BMW Group

2025

Let’s do - hardware
NODE.tracking



ROS"1"
Navigation



Starting Point :

Just a software stack,
no hardware

Challenges:

Communication between distributions
Reliance on the quality of customer sensor data
Lack of control over the hardware layer on the ROS side
Variability in PC setups

Tools We Utilize

Docker and docker compose for deployment
Custom-developed provisioning tools

Customer Hardware Stack

NODE Stack

Customer IPC



Software stack scope 



ROS"1" navigation state

Interconnection to the stack is easy

Across ROS Distro Support possible

Discovery goes through roscore

Grown over time 

One Distro to rule them all and Docker

NODE ROS1 Stack Customer ROS1 Stack



How to combine ROS with other interfaces and technology

We come from ROS - all of the sudden we
need to include other APIs

Continiously growing construct over time

We need to add a UI to our Navigation stack
for non - ROS Users

Who is aggregating what? - Diagnostics,
VDA5050 Information

Let’s do what we know. Make ROS and wrap
things around



Grown software stack over time in ROS1

What is the best state machine tooling for navigation
- Switching from Smach to Behavior Trees

We came late to Behavior Trees

Nobody spoke about docking, multiple
planners different navigation typse.

VDA5050 Integration - Runtime
Generation of Behavior Trees



VDA5050 actions, docking and what we call skills

How can we incorporate custom or complex behavior
that doesn't simply involve getting from point A to B?

Utilize a custom YAML format

Integrate runtime-generated behavior trees

Incorporate elements that are challenging to
visualize and comprehend

Hard to read and maintain but cool once you have set it up



Proven stack in production over years - still running

Summary of ROS"1"

Connectivity and integration is easy with the ROS“1”

Some design decisions might be not that great 

No Lifecycle Management

Custom Behavior based on Yaml and Behavior
Trees



ROS2 Migartion
and new
Challenges



Why did we actually migrate?

EOL of ROS Noetc 

Cybersecurity Risks

New features out there which we want to add

Improved design and capabilities



ROS2 journey so far

Running
everything in
Jazzy

Let’s setup a
branch and
build it

Make all the
packages as
COLCON
IGNORE

Migrate the
libraries and
delete a lot of
things

 NAV2
interface
updates -
early adopt  to
Iron



Problems in the beginning

Early Adopter Problems - not stable, API breaking changes,
missing understanding of ROS 2

No clue about how DDS works - still the case

Most customer still runs ROS”1" stack.

Quiet frequent updates needed from the latest state - we need
to adopt new features early



New Design
Decisions
and Tooling



Lifecycle manager

Introduced a new Lifecycle Manager
Gained control over startup and states
Implemented states for:

Mapping
Planning
Localization



Unification of APIs and usability accross interfaces

REST API, VDA5050, ROS - we don’t care

Improved design and capabilities for customer APIs

Bring VDA5050 and REST APIs into main stack 

Reduced size and amount of images for deployment



Skills and better generic interfaces to combine technologies

Gives customer possibility to write
their own skill

One generic Action interface

Easy to configure standard skills 

Visualize your skill with Groot



Skills and better generic interfaces to combine technologies



DDS -
Still a Problem



DDS setups - why so complicated

NODE Stack Customer ROS2 Stack

Middleware configuration makes it even worse

Multiple middlewares make integration more complex

Customers come with own or have not thought about it yet

Increase in onboarding time and complexity

Switiching between “defaults” over ROS Distros



Middleware NODE Distro - Customer Distro

CycloneDDS
Jazzy- Jazzy
Jazzy - Iron

Jazzy - Humble 

CycloneDDS - Double Zenoh Bridge
- CycloneDDS

Jazzy-Jazzy
Jazzy - Iron

FastRTPS Not used

Zenoh Jazzy - Jazzy

ROS1_bridge - CycloneDDS
Jazzy - Jazzy
Jazzy - Iron

Zenoh works for some use cases - for others
it also shows problems

CycloneDDS is default RMW at the moment

DDS at NODE - What are we using

Zenoh bridge setup is also one solution we have running

Interdistro communication breaks CLI on some Distros
 CycloneDDS- ROS1_bridge 

Jazzy - Kinetic
Jazzy - Noetic

Zenoh - ROS1_bridge Jazzy - Noetic



Discovery with ARM/NVidia seems to be problematic

Problems independent of middleware 

Discovery takes ages during startup

Python launch files seem to be nice,
but startup load is a thing.

CycloneDDS not usable because discovery
takes very long and leads to crashes

Customer Iron/jazzy
CycloneDDS

ZenohBridge

NODE Jazzy
CycloneDDS



Customer  Stack

ROS1 Bridge

NODE Jazzy 
Only works with hardware communication for tf, twist, odometry

ROS2 Jazzy in combination with ROS1 legacy

No complex or custom messages

ROS2 and legacy



How to visualize my data?

What  do we do if RViz is not working/possible?

Network does not allow multicast 

Other setup often not possible



Unicast setup possible but also nothing for fast debugging

CycloneDDS and RViz without multicast is a pain

Deploy zenoh bridges on the fly

How to visualize my data? - Why not Zenoh Bridge it



How to visualize my data?

What  do we do if RViz is not working/possible?

Lichtblick Suite:

https://github.com/lichtblick-suite/lichtblick

https://github.com/lichtblick-suite/lichtblick
https://github.com/lichtblick-suite/lichtblick


How to visualize my data?

Lichtblick

Initially comes from Foxglove

WebBased Visulaization 

Can be run with ROS2 Web Bridge



What have we learned?

Early Adoption is nice but way to
production takes some time

Customer go their own way
We need to find ways to adapt

Robotics is more than ROS
Consider this in design decisions

Unification can give benefits
in the long run



LinkedIn

Website

Philipp Schnattinger
Chief Robotics Officer 

Thanks!



Join us and 
help make
mobile robots
easy to use.

Open positions!


