
The State of Open-RMF
ROSCon 2024



Quick Recap



Logistics

Cleaning

Delivery

The interoperability 

dilemma

Many Amazing 

Robots

but they need 

to communicate 

with each other 

Security

and resources 

have already been 

spent to develop 

and deploy 

disparate 

platforms

We can’t 

all get 

along

X

Guten 

Tag! こんにちは

Food Serving

Quick Recap



Quick Recap: Assumptions

● Robots from multiple vendors will be needed
No single vendor offers a robot that can do everything

● Not all mobile robots can offer the same inputs/outputs or capabilities
Different vendors have different APIs and levels of control available

Some platforms may have more or less “intelligence” than others, e.g. AGV vs AMR

● Dynamic environments with unpredictable elements
The robots need to operate amidst human traffic

Furniture or other items may be moved, creating unanticipated static obstacles

● Centralized command & control is not (always) an option
Different platforms might have their own fleet management tools

They might get installed and maintained by different system integrators



Quick Recap: Design

● Shared traffic schedule
All robots openly communicate their intended trajectories through space-time

● Negotiate to resolve conflicts
A peer-to-peer negotiation process, similar to “conflict-based search” is used to fix traffic conflicts when they arise

● Auction tasks to find the “most available” agent
If multiple different robot platforms can perform a task, they will “bid” to see who can get it done at the “lowest cost”

● Provide a stable (while evolving) SDK
We are constantly improving the implementation and algorithms used

We maintain stable APIs in the C++ and Python SDKs so the efforts of early adopters are not wasted

New features/capabilities become available by expanding the APIs of the SDKs

❌No specification or stable wire protocol (for now)
The wire protocol often needs to change as the algorithms improve

Users should integrate using the SDK, which hides the details of the wire protocol and maintains compatibility



Fundamental Components

Unified Traffic Schedule

Resource Negotiation

Task Auctioning

Reusable Software Libraries
Multi-agent Motion 

Planners
Task Planners

Simulation ToolsWeb Tools

Platform Adapters

Fleet Manager <X> Infrastructure

Devices Individual Robots
Drop-in executables (ROS nodes) that help 

coordinate distributed systems

Use these inside your own custom apps

Connect hardware to your system



Present



Some operations may need specific maneuvers that require more clearance than 

what the usual traffic negotiation system can provide.

Recent Additions: Mutex Groups

Cart Pickup/Drop-off



With mutex groups, we can mark this cluster of lanes and vertices as belonging to 

one mutex group (marked red).

Recent Additions: Mutex Groups

Cart Pickup/Drop-off



Any other robots that want to enter this cluster must wait until the mutex group is 

unlocked, regardless of what the traffic negotiation system would allow.

Recent Additions: Mutex Groups

Cart Pickup/Drop-off



Recent Additions: Robot Commission

New “commission” feature allows robots to be temporarily taken in and out of 

service

● A decommissioned robot can automatically redistribute its queued tasks to 

other compatible robots in the same fleet

● A decommissioned robot will stop receiving new task requests from Open-

RMF

● You can choose to recommission a robot at any time

● A recommissioned robot may immediately receive compatible task requests 

that were queued up for other robots in the same fleet



Recent Additions: Reservation System

There are often cases where multiple robots have the same destination at the 

same time, e.g. needing to receive a payload at a pickup point.



Recent Additions: Reservation System

They will each ask the Reservation Node to reserve the spot for them 

Reservation 

Node



Recent Additions: Reservation System

One will be granted the reservation and the other will be given a parking spot to 

wait at

Reservation 

Node



When the first robot is finished, the reservation node will notify the parked robot 

that the destination is now reserved for it

Recent Additions: Reservation System

Reservation 

Node



Recent Additions: Ionic Demo

The new demo world for Gazebo Ionic has Open-RMF integration!

● Navigation performed by Nav2
● Workcell motion planning done by MoveIt!
● Actions coordinated by Open-RMF

https://github.com/gazebosim/ionic_demo

https://github.com/gazebosim/ionic_demo


Future
“next generation”



Past Scope

Emphasis on mobile robots:

● How do they coordinate the sharing of space? e.g. crossing paths in a corridor

● How do they share infrastructure? e.g. automated doors and elevators

● How do they synchronize with other devices? e.g. a robot arm that loads a delivery

Modest scale—not too much robot density (for now):

✅Hospitals (clean, telepresence, schedule and ad hoc deliveries)

✅Malls, hotels, airports (clean, deliver, security, assistance)

✅Libraries (clean, deliver, scan bookshelves)

❌Dense warehouses



Future Scope

Orchestration of automated devices in general:

● How do devices coordinate their activities?
e.g. devices work in parallel when possible, and sync when needed

● How do devices share resources? 
e.g. optimizing how resources are allocated to minimize the overall delay to all devices 

● How do we make the overall system understandable to humans?
e.g. human operators should not usually be surprised by the system’s behavior, and when a surprise does happen, a good 

explanation should be readily available

Any scale:

✅Dense warehouses

✅Factories

✅Entire cities



Complaints we’ve received and issues we’ve observed

● Despite being contained in just a few headers, the public API is difficult for 

users to find. And if they do find it, they might not know how to begin with it.

● Difficult to contribute / improve / modify the core because of the complexity 

and the risk of data races, undefined behavior, etc.

● Difficult to handle special situations

● Path planning is not customizable enough

● Traffic negotiation is not customizable enough

● Task behaviors are not customizable enough

● Open-RMF tries to do too much

● Open-RMF doesn’t do enough

Both of these at the same time 

and in the same situation



New paradigms:

● High-performance memory-safe language (Rust)
○ Eliminate risk of data-races, undefined behavior, and inexplicable crashes

○ Still get maximum performance, minimal overhead, and full benefit of multi-threading with none of the 

risks

○ Easier to contribute since each new LoC doesn’t risk introducing new undefined behavior

● “Entity Component System” implementation (Bevy)
○ Extreme modularity

○ Extreme extensibility

○ Higher performance than traditional use of interfaces and smart pointers

(better CPU cache optimization)

● Service Workflow Architecture
○ All behaviors are defined in terms of workflows built out of services and actions

○ Every workflow is, itself, a service / action

○ Users can define custom workflows and insert them into the system

Is this even solvable??



Workflows

Inspired by “Workflow Nets”, a special case of Petri Nets

(thanks to Thomas Horstink for presenting on Petri Nets at ROSCon last year)

Define the flow of activities as a workflow diagram and it can be executed

sense

think

act

recover



Workflows

Good at intuitively expressing parallel activities and syncing them as needed

Go To Place

Reserve Location

Move Robot

Move Robot

wait for availability

Trim
ready

arrived



All items 

delivered

Workflows

Good for expressing cycles

Multi-Delivery

Pick Up

Item Queue

Item ready

Cargo space available

Cargo full

Drop Off

Cargo space available

Items out 

of stock

Pick-up is 

too costly



Workflows
Implemented as bevy impulse: https://github.com/open-rmf/bevy_impulse

Primitive operations supported out of the box:

● Scope create a sub-workflow within a larger workflow
○ When the termination node of a scope is reached, all remaining activity in the workflow will be forced to stop
○ Good for racing different branches against each other

● Fork Clone clone (copy) an output and send it down multiple branches at the same time
● Filter check the value of the input and dispose it if a condition is not met
● Unzip split one Output<(A, B, C, …)> into Output<A>, Output<B>, Output<C>, …

○ Each output can then be sent down its own branch in the workflow

● Join merge multiple branches into one, i.e. Output<A>, Output<B>, Output<C> into Output<(A, B, C)>
● Listen trigger a node each time one or more buffers in the workflow is modified
● Spread if an output contains a collection of elements (e.g. an array, a vector), give each element its 

own thread along the same branch
● Collect gather up some (or all) of the upstream activity into a collection before sending off the whole 

collection as one output
● Gate temporarily block some branch of the workflow from running, collecting the inputs for that branch 

into a buffer
● Trim cancel all current activity in some part of a workflow

https://github.com/open-rmf/bevy_impulse


ROS Client Library

Several ROS 2 client libraries exist for Rust, but we’re committing to rclrs

● https://github.com/ros2-rust/ros2_rust

● Community-driven

● Monthly working group meetings

● Practices are aligned with the broader ROS ecosystem

● Aims to become a first-class and fully featured ROS 2 client library

Enhancing rclrs is officially on the Open-RMF roadmap

https://github.com/ros2-rust/ros2_rust


Multi-agent Path Finding

More advanced MAPF

https://github.com/open-rmf/mapf

● Implemented in Rust

● Customizable

● Scales well to large and 

complex problems

● Out-of-the-box Continuous 

Conflict-Based Search planner

https://github.com/open-rmf/mapf


bevy impulse

mapf

rclrs

Next Generation Fleet Adapters

First Targets

→ MiR API↳ MiR has an open specification which the Open-RMF team is very familiar with

→ VDA 5050↳ Open specification which is popular in the European auto manufacturing industry

→ Native Integration↳ We’ll provide a plugin for the ROS 2 nav stack (Nav2)↳ Any Nav2 robot that uses the plugin would immediately integrate seamlessly with 

traffic negotiated by Open-RMF

What’s coming



We love feedback!

Open-RMF Project Management Committee (PMC) every two weeks

01:00 UTC+0 Tuesday (folks on the west side of the Atlantic will see this Monday)

Next session on 5 November 2024

Special Interest Group on Interoperability

Not exclusively about Open-RMF, but it’s always an appropriate topic

Takes place this first Thursday of every month at 15:00 UTC+0

Project discussion board

https://github.com/open-rmf/rmf/discussions

All sessions are on the

OSRF Official Events 

Calendar

https://github.com/open-rmf/rmf/discussions

	The State of Open-RMF
	Quick Recap
	Quick Recap
	Quick Recap: Assumptions
	Quick Recap: Design
	Slide Number 6
	Present
	Recent Additions: Mutex Groups
	Recent Additions: Mutex Groups
	Recent Additions: Mutex Groups
	Recent Additions: Robot Commission
	Recent Additions: Reservation System
	Recent Additions: Reservation System
	Recent Additions: Reservation System
	Recent Additions: Reservation System
	Recent Additions: Ionic Demo
	Future
	Past Scope
	Future Scope
	Complaints we’ve received and issues we’ve observed
	Is this even solvable??
	Workflows
	Workflows
	Workflows
	Workflows
	ROS Client Library
	Multi-agent Path Finding
	What’s coming
	We love feedback!

