
Scaling Open-RMF
Test Bench → Lab → Controlled Environment → Production

Akash Vibhute, Xi Yu Oh
Intrinsic

ROSCon 2024



Agenda
01 Getting started with Open-RMF

02 Testing with hardware

03 First run onsite

04 Calling it in production

05 Q&A

2 min

4 min

15 min

4 min

5 min



Getting started with 
Open-RMF

Let’s start simple

1.



Getting started
github.com/open-rmf/rmf_deployment_template
▪ docker-compose for testing
▪ k8s for deployment
▪ CI template available!



The earlier you catch defects, 

the cheaper they are to fix.

Whoops!



Testing with hardware
Connect to real hardware where possible, 
simulate/mock the rest

2.



Simulation

No hardware involved. 
We can conduct repetitive 
testing using a fraction of 
the time for debugging.

Lab

Integrating RMF with real 
robots, putting the 
implemented fleet 
adapter to test.

Controlled 

environment

Running RMF at the actual 
site, discovering new 
limitations in the space, 
deployment network and 
building infrastructure 
we’re dealing with.

Production

Co-exist with human staff 
along with scheduled 
building/robot 
maintenance, fire alarm 
evacuation exercises, etc. 

Dev, Test



Testing with hardware
For effective Open-RMF navigation graph testing

▪ Add lanes depicting the deployment environment in your test 
traffic map

▪ Add “unplanned” obstacles to the environment
▪ Include Docking/Charging in test plan



Testing with hardware

Shelves S
h
e
l
v
e
s

Shelves S
h
e
l
v
e
s

Shelves 

Charger

Lot Lot Lot Lot

What’s wrong with this 
diagram?



Shelves S
h
e
l
v
e
s

Shelves S
h
e
l
v
e
s

Shelves 

Charger

Lot Lot Lot Lot

Testing with hardware
Add doors, lifts to your 
testing.
Try interrupting the 
robot by introducing 
humans.

Lift



Testing with hardware
Strategies when simple hardware (eg. doors, beacons/alarms) are 
unavailable
▪ Connect to a simulated device to publish response messages on 

your real topic
def door_command_mock(open):

return True



Strategies when stateful hardware (eg. lifts) are unavailable
▪ Connect to a simulated hardware

● An elevator signal emulator for interface testing is available here: github.com/open-

rmf/mock-lift-io

Testing with hardware

Elevator 
signal 

simulator 

Elevator 
interface 
hardware

Open-RMF 

adapter
Electrical signals. Eg. 
Digital Inputs, 
Outputs

IP Network



First run onsite
Connect to real hardware in the real 
environment, with ability to introspect

3.



Simulation

No hardware involved. 
We can conduct repetitive 
testing using a fraction of 
the time for debugging.

Lab

Integrating RMF with real 
robots, putting the 
implemented fleet 
adapter to test.

Controlled 

environment

Running RMF at the actual 
site, discovering new 
limitations in the space, 
deployment network and 
building infrastructure 
we’re dealing with.

Production

Co-exist with human staff 
along with scheduled 
building/robot 
maintenance, fire alarm 
evacuation exercises, etc. 

Tune



Treat this as a discovery phase
▪ Run a single robot through all traffic lanes and waypoints.
▪ Observe network connectivity (e.g. WiFi, LTE, etc.)
▪ Once the confidence is high, test with more robots.
▪ Test traffic conflicts, at least for all expected situations.
▪ Invite the client to test at critical milestones - they almost always 

are better at finding bugs!

First run onsite



Limited and 

dynamic space

Failed pickups

Building 

infrastructure

Our experiences

Lift travel

Limited 

charging points

Periodic 

maintenance
Connectivity

IT constraints



Space constraints 

▪ Long and narrow hallways
▪ Tiny rooms with limited 

space for even a single 
robot to move around

▪ Heavy foot traffic and 
dynamic environment

▪ Several mobile obstacles 
around

Resolving constraints



Space constraints 

Mutex groups

To reduce potential 
negotiation deadlocks, users 
can now assign a mutex to 

waypoints and lanes to 
restrict occupancy of the area 
to only one robot at a time.

Without mutex groups With mutex groups

Resolving constraints

New feature available in rmf_ros2 repository



Space constraints 

Mutex groups

In this example,

Mutex groups applied by 
adding a mutex property to 
lanes and waypoints.
This creates “zones” where 
only one robot can occupy.

Mutex applied on a lane

Mutex applied on a waypoint

Resolving constraints

New feature available in rmf_ros2 repository

Robot waits here until 
green mutex group is no 

longer occupied



Space constraints 

Mutex groups

In this example,

Triangular roundabout added 
to manage movement 
between mutex groups.
This is achieved by using 
unidirectional lanes.

Resolving constraints

New feature available in rmf_ros2 repository



Limited chargers 

This particular site had less 
chargers than robots, e.g. 1 
charger for 2 robots.
This meant that the robots 
needed to share chargers, 
something that Open-RMF 

did not offer at the time.

Resolving constraints

charger



Limited chargers 

Dynamic charging

Introducing the concept of a 
charging schedule:
Users get to schedule each 

robot to a different charger 

during different periods

throughout the day.

Resolving constraints

Without dynamic charging With dynamic charging

New feature available in rmf_ros2 repository



Unable to remove robot 

from fleet during ops 

Robots need to be taken out 
of the fleet periodically for 
maintenance.
We would have to remove 
the robot from its RMF fleet 
to prevent task allocation to 

an absent robot.

Shelves S
h
e
l
v
e
s

Shelves S
h
e
l
v
e
s

Shelves 

Charger

Lot Lot Lot Lot

Lift

Resolving constraints



Unable to remove robot 

from fleet during ops 

At the time, to remove one 
robot from the fleet adapter, 
we would need to bring down 
the entire fleet first. 
If done during operational 
hours, this disrupts the 

remaining robots in the fleet

and their tasks.

Shelves S
h
e
l
v
e
s

Shelves S
h
e
l
v
e
s

Shelves 

Charger

Lot Lot Lot Lot

Lift

Resolving constraints



Unable to remove robot 

from fleet during ops 

Robot commission

We can now decommission a 

robot without affecting other 

robots in the fleet.
RMF will also re-allocate any 

queued tasks for this robot.
Users can re-commission the 
robot whenever ready.

Resolving constraints

Shelves S
h
e
l
v
e
s

Shelves S
h
e
l
v
e
s

Shelves 

Charger

Lot Lot Lot Lot

Lift

New feature available in rmf_ros2 repository



Unable to remove robot 

from fleet during ops 

Robot commission

Decommissioning can re-

commissioning can be done 
from RMF Web.

Resolving constraints

New feature available in rmf_ros2 repository



WiFi connectivity 

Robots disconnect from WiFi 
periodically while in motion.
Fleet adapter may not behave 
as desired without updates 
from robots.

Resolving constraints
WiFi connectivity

Test pings to server from 
robot, and restart WiFi if ping 

loss > threshold.
Add retry loops in fleet 
adapter to attempt to re-

retrieve robot states and 
replan navigation paths.



Resolving constraints
IT limitations 

▪ Solutions must be hosted 
locally

▪ Only designated firewall 
ports can be opened.

▪ Data on server should not 
be “seen” by a malicious 
actor if gained access to 
host

IT resolutions

▪ Bootstrapped kubernetes 
cluster locally using k3s.

▪ Restricted external 
communications to run fully 
over port 443 (robot uses REST 
API), and ran DDS in-cluster 
only (Cyclone DDS worked well 
for our deployments).

▪ Cluster hardening to limit data 
exposure.



Resolving constraints

:)
Firewall + Exposing limited 
services outside of cluster 
reduces attack surface

Hardened cluster

Bootstrapped 
cluster



Calling it in production
You have tested well, and are now ready to 
go live!

4.



Simulation

No hardware involved. 
We can conduct repetitive 
testing using a fraction of 
the time for debugging.

Lab

Integrating RMF with real 
robots, putting the 
implemented fleet 
adapter to test.

Controlled 

environment

Running RMF at the actual 
site, discovering new 
limitations in the space, 
deployment network and 
building infrastructure 
we’re dealing with.

Production

Co-exist with human staff 
along with scheduled 
building/robot 
maintenance, fire alarm 
evacuation exercises, etc. 

Certify



Calling it in production
Run tests to include special cases in your UAT
▪ Ask your customer to play with the deployment!
▪ For rare events like fire alarm triggers, ask the site to trigger it for 

testing with robots - observe if the robot performs the intended 
behaviors.

▪ For lift travel, test with human interference.



Use Case Test Case Test Method Expected Result Pass / Fail

User Login -
Authorized 
User

Validate authorized user 
able to login

1. Navigate to login screen
2a. Enter correct ID and correct 
password
2b. Enter correct ID and wrong 
password
2c. Enter unauthorised ID and correct 
password
2d. Enter wrong ID and wrong password
3. Click "Login"

Dashboard authentication correctly and allows 
validated users to login via their ID.
2a → User should be able to login to 
dashboard
2b → User should not be able to login to 
dashboard
2c → User should not be able to login to 
dashboard
2d → User should not be able to login to 
dashboard

Workflow 1 -
Ad hoc 
delivery

Validate ad hoc job is 
added to task list and 
robot executes task 
immediately

1. Click "+ NEW TASK" button
2. Select Task type "Delivery"
3. Select Pickup Location
4. Select Dropoff Location
5. Click "Submit Now"

- Task should be created and listed in task 
view
- Robot executes task

Deconfliction Validate two Robot will 
be able to de-conflict 
when cross path at lobby

No intervention 2 Robots will autonomously take turns to 
proceed to deconflict itself without human 
intervention.



Calling it in production
Tune resource limits and requests in 
charts

▪ E.g. A three-robot deployment across a 
few floors, is unlikely to require more 
than 4 CPU, 8 GB memory; spread 
allocation and limit SPoF.



Calling it in production
Pre-emptive alerting
▪ Running Open-RMF in test mode 

assumes somebody is watching all its 
moves, well not in production…

▪ Setup Grafana/Prometheus to send 
you alerts
(yes, available with the deployment template!)





Calling it in production
Logging for future debugging
▪ The importance of logs can never be 

overstated!
▪ Setup Loki to log pod outputs and 

rotate periodically
(yes, available with the deployment template!)



Special thanks to everyone in 

the Intrinsic Singapore team, 

who made a robust Open-RMF 

deployment possible!

Thanks!

Find out more about 
Open-RMF

rmf_ros2
Github repository

rmf_deployment_template
Github repository


	Scaling Open-RMFTest Bench → Lab → Controlled Environment → ProductionAkash Vibhute, Xi Yu OhIntrinsicROSCon 2024
	Agenda
	Getting started with Open-RMF
	Getting started
	Slide Number 5
	Testing with hardware
	Slide Number 7
	Testing with hardware
	Testing with hardware
	Testing with hardware
	Testing with hardware
	Testing with hardware
	First run onsite
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Calling it in production
	Slide Number 31
	Calling it in production
	Slide Number 33
	Calling it in production
	Calling it in production
	Slide Number 36
	Calling it in production
	Slide Number 38

