
Real-time ROS 2 applications made 
easy with cactus-rt

Shuhao Wu
Oct 22 2024, ROScon 2024 Odense



Who am I?
● Shuhao Wu

○ https://shuhaowu.com
● Active in the ROS real-time community

○ Maintain the real-time ROS Raspberry Pi image
○ Hosted real-time workshop last year

● Currently: Senior software engineer @ NVIDIA
○ Cloud and real-time visualizations for autonomous vehicles

● Previously: Staff production engineer @ Shopify
○ Large-scale cloud deployments, distributed systems, databases, 

performance, etc.
● Masters of mechanical engineering

○ Fluid dynamics, robotics

2

https://shuhaowu.com


Disclaimer
Opinions are my own, not representative of employer

3



What is “real-time” programming?

0.1 ms
10 kHz

1 ms
1 kHz

10 ms
100 Hz

100 ms
10 Hz

1 s
1 Hz

10 s
0.1 Hz

100 s
0.01 Hz

Deadline

Fa
ilu

re
 s

ev
er

ity

High-freq
Trading

(0.5 - 50μs?)

Control loop
(0.1 - 1 ms) Anti-lock 

braking
(10 ms)

Earthquake 
warning 
system
(2 - 5 s)

Live music 
production
(1 - 10 ms)

Text/voice 
communication

(0.5 - 2 s) Ph.D simulation?
(minutes - days)

Online checkout
(5 - 10 s)

Collision 
detection
(5 - 10ms)

Perception,
localization
(20-40ms)

4

AV 
visualizations

(5 - 33 ms)



What is “real-time” programming?

0.1 ms
10 kHz

1 ms
1 kHz

10 ms
100 Hz

100 ms
10 Hz

1 s
1 Hz

10 s
0.1 Hz

100 s
0.01 Hz

Deadline

Fa
ilu

re
 s

ev
er

ity

High-freq
Trading

(0.5 - 50μs?)

Control loop
(0.1 - 1 ms) Anti-lock 

braking
(10 ms)

Earthquake 
warning 
system
(2 - 5 s)

Live music 
production
(1 - 10 ms) AV 

visualizations
(5 - 33 ms) Text/voice 

communication
(0.5 - 2 s)

Collision 
detection
(5 - 10ms)

Perception,
localization
(20-40ms)

Real-time in robotics

5

Online checkout
(5 - 10 s)

Ph.D simulation?
(minutes - days)



● Real-time OS + scheduler

Intro to real-time programming 101

6



● Real-time OS + scheduler
● Careful memory management

○ No allocation
○ No page faults

Intro to real-time programming 101

7

Access value

Page table

Virtual 
memory

Actual 
memory

Disk

Look up

Found on disk

Copy to 
RAM (1ms)



● Real-time OS + scheduler
● Careful memory management

○ No allocation
○ No page faults

Intro to real-time programming 101

8
Time

Access value

Page table

Virtual 
memory

Actual 
memory

Disk

Look up

Found on disk

Copy to 
RAM (1ms)

● Careful cross-thread communication
○ Priority-inheritance mutex
○ Lockless programming



The rest of real-time programming 101
Hardware + OS latency

● Run a real-time OS like Linux + PREEMPT_RT
● Measure + tune hardware and OS latency
● Use a real-time task scheduler like 

SCHED_FIFO and SCHED_DEADLINE
● Measure and tune IO access latency

Application + library latency

● Lock memory to prevent page faults
● Use priority-inheritance locks or lockless 

programming for communications
● Use the right clock for looping
● Use asynchronous, allocation-free, and 

lockless logging
● Avoid dynamically allocate memory
● Avoid unbounded syscalls
● Avoid exceptions
● Careful of amortized O(1) algorithms
● Avoid libraries that does the above

9

Hardware
latency

OS
latency

Application
latency

Response latency

Time
Event start Event response

So much to 
know…



Real-time programming with ROS 2
● Two types: 1000 Hz real-time vs real-time messaging

○ 1000 Hz real-time: I want a 1000 Hz timer
○ Real-time messaging: I want to process my message within N ms end-to-end

● ROS 2 executors are not generally designed for either
● Real-time messaging in ROS requires executor cooperation

○ See ROScon 2023 RT workshop session 3 and 4
● 1000 Hz real-time can be implemented alongside with ROS 2

○ ros2_control adopts this architecture

10

https://github.com/ros-realtime/roscon-2023-realtime-workshop/blob/main/Realtime%20workshop%20ROScon%202023.pdf


Ideal 1000 Hz ROS 2 dev environment
● “I want to just write the code that executes every 1 ms”

○ Delegate away the interaction with OS APIs to setup real-time
○ Publish to and receive from ROS 2 topics in real-time
○ Communicate between threads in a real-time-safe way
○ Print and log normally
○ Have tracing to verify maximum latency

11



Ideal 1000 Hz ROS 2 dev environment
● “I want to just write the code that executes every 1 ms”

○ Delegate away the interaction with OS APIs to setup real-time
○ Publish to and receive from ROS 2 topics in real-time
○ Communicate between threads in a real-time-safe way
○ Print and log normally
○ Have tracing to verify maximum latency

● Why can’t we have this in the 2020s?
○ Also where is my flying car?!

12



cactus-rt: A real-time framework on Linux

13



A simple 1000 Hz thread and app

14Full example source code

https://github.com/cactusdynamics/cactus-rt/blob/master/examples/ros2/roscon2024/simple_example.cc


Asynchronous logging
● Logging is critical to debug logic issues
● Normal loggers (std::println, spdlog, rclcpp log)

not safe for real-time
● Real-time-safe logger must:

○ Not call write synchronously
○ Not use locks
○ Not format string in real-time thread

● cactus-rt integrates with Quill
○ Automatically starts background logging thread
○ Each Thread/CyclicThread has its own logger via Logger()

15

https://github.com/odygrd/quill


A simple 1000 Hz thread interacting with ROS
● First create the ROS 2 pub/sub via the ros2_adapter_

○ In Thread::InitializeForRos2

16
Full example source code

https://github.com/cactusdynamics/cactus-rt/blob/master/examples/ros2/roscon2024/ros_example.cc


A simple 1000 Hz thread interacting with ROS
● Read subscription or write to publisher in Loop function

○ StampedValue<T> is two fields
■ .id is the sequence number
■ .value is T

● T is not a ROS type, but a real-time-safe type
■ Necessary as some ROS types allocates a std::vector (e.g. JointTrajectory)

17Full example source code

https://github.com/cactusdynamics/cactus-rt/blob/master/examples/ros2/roscon2024/ros_example.cc


A simple 1000 Hz thread interacting with ROS
● Type conversion via ROS 2 type adapter (REP 2007)
● Possible to use ROS 2 type directly, but needs an extra template argument

18Full example source code

https://ros.org/reps/rep-2007.html
https://github.com/cactusdynamics/cactus-rt/blob/master/examples/ros2/roscon2024/ros_example.cc


How it’s made: publisher

● Using moodycamel::readerwriterqueue
● Timer polls for new messages and forwards to ROS (with type conversion)
● Data published are batched and slightly delayed due to async architecture

19

https://github.com/cameron314/readerwriterqueue


● Two variants: all values and latest value
● Detect dropped messages via sequence numbers
● Subscription data not received via callbacks, but via explicit polling

How it’s made: subscriber

20



Validating timing via RT-safe tracing
● Tracing is critical to debug timing issues

○ Timing issues critical to real-time software
● Most tracing systems are not real-time safe

○ Locks, memory allocation (resizable buffers), etc
● cactus-rt provides a built-in real-time-safe tracing system

21



Tracing with cactus-rt
● RAII-based API to mark beginning and end of a span
● Internally writes trace event to a lockless queue

○ Overhead: 0.02 - 2 μs per call on the RT thread
● Background trace aggregator writes out 

Perfetto-compatible data

22

https://perfetto.dev/


Visualizing traces
● Visualize in Perfetto’s UI: 

○ Upstream visualizer: https://ui.perfetto.dev
○ cactus-rt-specific fork https://cactusdynamics.github.io/perfetto/

23

https://ui.perfetto.dev
https://cactusdynamics.github.io/perfetto/


Visualizing traces
● Visualize in Perfetto’s UI: 

○ Timeline view
○ Table view with sorting

24



Visualizing traces
● Perfetto’s visualizer is one of the best-in-class

○ Timeline view
○ Table view with sorting
○ SQL processing

25



Visualizing traces
● Perfetto’s visualizer is one of the best-in-class

○ Timeline view
○ Table view with sorting
○ SQL processing
○ Custom vega-lite visualization
○ cactus-rt-specific fork: pre-baked vega-lite histogram

26



Other features
● Priority inheritance mutex: cactus_rt::mutex
● SPSC atomic data structures to pass data to/from real-time thread

○ RealtimeReadableValue and RealtimeWritableValue
■ Originally designed by Dave Rowland & Fabian Renn-Giles
■ Formally verified with TLA+ and implemented in cactus-rt

● Xorshift constant-time random number generator
○ Not fully uniform random, but guarantees constant time

● Possible future work:
○ Built-in RT memory allocation tracer
○ BPF-based syscall tracer
○ Additional atomic data structures (SPSC ring buffer, RCU, exchange buffer, others)
○ Gradient-descent-based maximum time explorer

27

https://www.youtube.com/watch?v=PoZAo2Vikbo
https://en.wikipedia.org/wiki/Xorshift
https://www.kernel.org/doc/html/latest/RCU/whatisRCU.html
https://www.youtube.com/watch?v=j2AgjFSFgRc


cactus-rt is a RT programming framework
● cactus-rt makes building 1000 Hz real-time ROS 2 applications easy

○ Open source with MPLv2
● Comes loaded with bells and whistles for RT
● It ain’t a flying car, but you can program one with it?

Star it on GitHub! https://github.com/cactusdynamics/cactus-rt

Questions?

28

https://github.com/cactusdynamics/cactus-rt


Basic steps of creating a RT ROS 2 application
1. Create App and CyclicThread

○ Implement Loop function
2. Use InitializeForRos2 to register publishers and subscribers

○ Create type adapter for real-time and ROS types
3. Read and publish messages to ROS 2 via real-time types
4. Log with Quill
5. Trace and visualize with Perfetto

29


