ROS Robot
Health Monitoring:
a Bonsal approach

asp=

Emerson Knapp
Staff Robotics Engineer

Health

ion

Icat

Appl

Robo, why no go?

What is “robot application”?

=> Not just ROS

4

* 60

4

Configured host computer
Various system services
Connections to internet
Connections to hardware

ROS

=>» What’s a ROS application?

4

Connected, communicating graph of
special-purpose programs

=> Let’s take a holistic view

What is “health”?

Our Categories

.
L

System Diagnostics Hardware Diagnostics Application Level / Logical Autonomy Conditions
Graph Diagnostics
Is system resource usage Are expected hardware Health seems fine, but something
within appropriate bounds? devices connected and Is the ROS graph behaving? s preventing us from continuing.

communicating?

RMW
Stats
Shim
(all nodes)

B Bonsai Health Architecture

Telegraf
. Bridge
Topic
Statistics
ROS 6raph
Monitor

—V
/diagnostics

/’

HW Driver
Nodes

!
Application

Nodes

I

Autonomy

Condition

Deslred

Diagnostic
Analyzers +
Aggregator

7
/

Actuation

A\

Application
Status

Actuation Command

Vehicle
Interface

' B Oveview

Today let’s focus on:

=>» Developer perspective
We're devs, trying to debug our bot

BUT, Some info also valuable to surface to user

=>» Universal Parts: Host Metrics & Graph Monitoring
ROS Diagnostics covered already &

Hardware & Autonomy checks more specific to your application

B Bonsai Health Architecture

InfluxDB >

A
A

Topic
Statistics

RMW
Stats
Shim
(all nodes)

Telegraf
Bridge

ROS Graph
Monitor

—

The TIG Stack

System metrics - one approach

B System Metrics - TIG

TIG

=>» Telegraf

Host-side metrics collector with lots of
built-in plugins, and easy to extend

=> InfluxDB

Performant Time Series Database,
integrates by design with Telegraf

=>» Grafana

Open source easy-to-use dashboarding
platform

@ influxdata’

Grafana

= Home > Dashboards > Sample Vehicle Dashboard W ® & | Add v Share @ Last 1 minute Q O 5s v

v System

CPU Per Core CPU Memory
100% 100% 100%
80% 80%

80%
60% 60%
40% 40% 60%
20% 20% 40%

0% » 0% —— —
21:58:50 21:59:00 21:59:10 21:59:20 21:59:30

21:58:50 21:59:00 21:59:10 21:59:20 21:59:30 21:59:40 20%
— Cpu.USage_widi | Lpu. Upu-wial ;= Lpu.Usaye_total | Lpu. CpuY
== cpu.usage_total == J.mean_usage_gu c 2an, s of:

== cpu.usage_total { cpu: cpul} == cpu.usage_total { cpu: cpu2 } 0%
= B il : pd . == cpu.usage_total { cpu: cpu3} == cpu.usage_total { cpu: cpud } 21:58:50 21:59:00 21:59:10
== Ccpu.mean_usac e mean_usage_softirg cpu.mean_usage._

== ~niiieana tatal { cnne AnnS 3

21:59:20 21:59:30 21:59:40
~niiicana total £ enie ~niR L = mem.used_percent

Network Disk Disk I/0
768 B 100% 5KiB
80% 4KiB
60% 3KiB
2KiB
40%

1KiB
20%

0B
0% 21:58:50 PAREH PARER 21:59:20 21:59:30 PARER
21:58:50 21:59:00 21:59:10 21:59:20 21:59:30 21:59:40 21:58:50 21:59:00 21:59:10 21:59:20 21:59:30 21:59:40

== disk.used_percent { device: vdal} == disk.used_percent { device: vdb }

== diskio.read { name: vda } == diskio.write { name: vda} == diskio.read { name: vda1}
== net.bytes_recv { interface: ethO } == net.bytes_sent { interface: ethO }

== diskio.write { name: vdal} == diskio.read { name: vdb } == diskio.write { name: vdb }

Topic Pub Frequencies Topic Receive Frequencies
2 Hz 1Hz
1.5 Hz 750 mHz
1Hz 500 mHz
500 mHz 250 mHz
0 Hz z
21:58:50 21:59:00 VAR PAR: () 21:59:30 21:59:40 21:58:50 21:59:00 21:59:10 21:59:20 21:59:30 21:59:40

== topic_statistics.mean { node: /deadline_publisher, topic: /chatter } == topic_statistics.mean { node: /foxglove_bridge, topic: /diagnostics }

== topic_statistics.mean { node: graph_monitor, topic: /diagnostics }

== topic_statistics.mean { node: /foxglove_bridge, topic: /diagnostics_agg }

Telegraf Publisher Node

Subscription Received Frequency

40 Hz

35Hz

Simple ROS 2 Node (Python)
Sends UDP metrics -> Telegraf
/topic_statisticsin
Room to improve: want to make this |Ex
bidirectional, pluggable to extend

20 Hz

0 Hz
22:31:50 22:32:00 22:32:10 22:32:20 22:32:30 22:32:40 22:32:50 22:33:00

== {node="/autonomy_status", topic="/health/diagnostics_result"}

== {node="/bonsai_robot_state_publisher", topic="/vehicle/joint_states"}

ROS Application Monitoring

Turtle graphs all the way down

V.

Graph Problems

Node Gone Discontinuities Message Rate
A program isn’'t even running Data not flowing correctly.
Dead Sink Leaf topic @
No publishers No subscribers

20 —>?
O O y

B ROS Graph Monitoring

Topic Statistics!

Core feature not usable (my bad, sorry). Here's what we're doing:

[:Your normal node :]

/ N
1n1t rmw API
RMW_ IMPLEMENTATION WRAPPER
- load—" —
w_ 1mp1ementat10n — (rmw_stats_shim) creates
library /

load call /topic_statistics
\\‘ ¢ pub
RMW_IMPLEMENTATION ~
(e.g. rmw_cyclonedds_cpp)

DDS (or whatever)

' B ROS Graph Monitoring

Topic Statistics Monitoring

All you have to do:

e Set Deadline QoS on Publishers (that’s it, no callbacks, no subs)
® Python:

rclpy.qos.QoSProfile(depth=X, deadline=Duration(seconds=0.2)))
o C++:

rclepp::QoS(rclcpp::KeepLast(X)).deadline(std::chrono::milliseconds(200))

4

The GraphMonitor

e Single class, uses NodeGraphinterface - detects graph problems to Diagnostics

000 = (g

diagnostics X
Diagnostics = Summary (ROS) o
OK Filter
health: Rosgraph::Continuity::/chatter Leaf topic (No subscriptions)
health: Rosgraph::Continuity::/diagnostics Leaf topic (No subscriptions)
health: Rosgraph::Continuity::/diagnostics_agg Leaf topic (No subscriptions)

health: Rosgraph::Continuity::/diagnostics_toplevel_status Leaf topic (No subscriptions)

health: Rosgraph::PublishFrequency::/chatter Publisher sending slower than promised deadline

health: Rosgraph::PublishFrequency::/chatter 3

health: Rosgraph::PublishFrequency::/chatter

health: Rosgrap

Publisher sending slower than promised deadline

ws://local...oxglove_bridge / 2024-10-22 4:57:02.835 PM CEST

LAYOUT

Diagnostics - Summary (ROS)
OK Filter

/Health/RosGraph Warning

/Health/RosGraph/PublishFrequency Requ...

/Health/RosGraph/Nodes OK

/Health/RosGraph/PublishFrequency o TN

[Health/RosGraph/PublishFrequency

/Health/RosGraph/PublishFrequency

Required publish frequencies not
being met

Publisher
sending
slower than
promised
deadline

[chatter

Roscon2024 Health Sample

v @O [¢ omr+2

@ X [diagnostics_toplevel_status
diagnostic_msgs/msg/DiagnosticStatus @
1729609022.802000000 sec
level 1 (WARN)
name "/Health/RosGraph"
message "Warning"
hardware_id "
v values [] 1item
v 0 /Health/RosGraph/PublishFrequency: Required
publish frequencies not being met
key "/Health/RosGraph/PublishFrequency"
value "Required publish frequencies not being met"

/diagnostics_toplevel_status.level

@ WvARN

Open Sourced Components

And a sample application

' B Open Source Components

Health Monitoring Packages

https://bit.ly/ros-health-components

Real component packages that we are using internally:

Patched rmw_implementation

rmw _stats_shim : RMW wrapper to calculate and publish statistics
rosgraph_monitor: ROS Graph Monitor & Diagnostic Analyzer

o I'mnot using diagnostics aggregator properly, come help!
e telegraf_bridge: just publishing /topic_statistics to Telegraf for now

4

https://bit.ly/ros-health-components

' B Sample Application

Sample Application

https://bit.ly/ros-health-app

e Provides VCS workspace.repos file for colcon workspace
e Entrypoint launchfile sample.launch
e docker-compose local full TIG stack with sample dashboard

https://bit.ly/ros-health-app

. % 4 Ny
% . g e,
s - WS P e

Practical Diagnosis

Four case studies of problems solved in the field

diagnostics X
Diagnostics -~ Summary (ROS)
OK Filter
health: Rosgraph::Continuity::/chatter Dead sink: cleared. Topic now has publisher(s)
health: Rosgraph::Continuity::/diagnostics Leaf topic: cleared. Topic now has subscriber(s)

health: Rosgraph::Continuity::/diagnostics_agg Leaf topic: cleared. Topic now has subscriber(s)

health: Rosgraph::Continuity::/di _toplevel_status Leaf topic: cleared. Topic now has subscriber(s)
health: Rosgraph::Continuity::/whatever Leaf topic (No subscriptions)

health: Rosgraph::Node::/robot_state_publisher Required node

health: Rosgraph::Node::/rosbag2_recorder R

health: Rosgraph::Node::/rowline_follower

health: Rosgraph::Node::/upload_manager Required node missing: /upload_man

health: Rosgraph::PublishFrequency::/chatter Publisher sending slower than promised deadline

health: Rosgraph::Node::/data_manager Node OK: /data_manager

health: Rosgraph::Node::/deadline_publisher Node OK: /deadline_publisher

health: Rosgraph::Node::/upload_manager

health:

Node::/upload._|

health: Rosgraph::Node::/upload_manager

Required node missing: /upload_man

]

Diagnostics - Summary (ROS) 3

B X

/diagnostics_toplevel_status

diagnostic_msgs/msg/DiagnosticStatus @ 1729677837.157000000 sec
level 2 (ERROR)
name "/Health/RosGraph"
message "Error"
hardware_id ""
v values [] 2items
v 0 /[Health/RosGraph/Nodes: Required nodes missing
key "/Health/RosGraph/Nodes"
value "Required nodes missing"
v 1 /Health/RosGraph/PublishFrequency: Required publish
frequencies not being met
key "/Health/RosGraph/PublishFrequency"”
value "Required publish frequencies not being met"

OK Filter

/Health/RosGraph
/Health/RosGraph/Nodes Require es m

/Health/RosGraph/PublishFrequency Required publi...

/Health/RosGraph/Nodes -] /diagnostics_toplevel_status.level

/Health/RosGraph/Nodes

/Health/RosGraph/Nodes

Required nodes missing

Required node
missing:
/robot_state_publisher
Required node
missing:
Jrosbag?2_recorder
Required node
missing:
Jrowline_follower
Required node
missing:
/upload_manager

Jrobot_state_publisher

Jrosbag2_recorder

/rowline_follower

Jupload_manager

]

]

v System

CPU
100%
80%

60%

/“—.—.7.—&—& ——0—0—0—0—0%—o
40% y

20% /
0% 0—0——0——0—0/
11:40:00 11:41:00 11:42:00 11:43:00 11:44:00 11:45:00 11:46:00
== cpu.usage_total == cpu.mean_usage_guest == cpu.mean_usage_guest_nice == cpu.mean_usage_idle

== cpu.mean_usage_iowait == cpu.mean_usage_irq == cpu.mean_usage_nice cpu.mean_usage_softirq

cpu mean,,usaqe,stea\ == cpu.mean_usage_system cpu.mean_usage_user
Memory
100%
80%
60%
40%

20%

0%
11:40:00 11:41:00 11:42:00 11:43:00 1:44:00 11:45:00 11:46:00

== mem.used_percent

Per Core CPU
100%
80%

60%

40%

20%

0% . °
11:40:00 11:41:00 11:42:00 11:43:00 11:44:00 11:45:00 11:46:00

== cpu.usage_total { cpu: cpu-total } == cpu.usage_total { cpu: cpu0} == cpu.usage_total { cpu: cpul}

== cpu.usage_total { cpu: cpu2 } == cpu.usage_total { cpu: cpu3} == cpu.usage_total { cpu: cpu4 }
== cpu.usage_total { cpu: cpu5 } cpu.usage_total { cpu: cpu6 } cpu.usage_total { cpu: cpu7 }
Disk
100%

80%

60%

40% e
—/

20%

(O
11:40:00 11:41:00 11:42:00 11:43:00 11:44:00 11:45:00 11:46:00

== disk.used_percent { device: nvme0 } == disk.used_percent { device: vdal}

== disk.used_percent { device: vdb }

diagnostics X

Diagnostics = Summary (ROS)

OK Filter
health: Rosgraph::Continuity::/camera_front_center/image_rgb Leaf topic (No subscriptions)
health: Rosgraph::Continuity::/canera_front_center/image_rgb Dead sink (No publishers)
health: Rosgraph::Node::/camera_front_ceter Node OK: /camera_front_ceter
health: Rosgraph::Node::/tree_detector Node OK: /tree_detector

health: Rosgraph::PublishFrequency::/chatter Publisher send frequency acceptable

health: Rosgraph::Continuity::/canera_front_center/image_rgb
health: Rosgraph::Continuity::/canera_front_center/image_rgb

health: Rosgraph::Continuity::/canera_front_center/image_rgb

Dead sink (No publishers)

Diagnostics - Summary (ROS) fo
OK Filter

/Health/RosGraph OK
/Health/RosGraph/Nodes OK

/Health/RosGraph/PublishFrequency OK

[Health/RosGraph/Nodes
[Health/RosGraph/Nodes

/Health/RosGraph/Nodes

OK

@ X /diagnostics_toplevel_status

diagnostic_msgs/msg/DiagnosticStatus @
1729678717.647000000 sec
level 0 (OK)
name "/Health/RosGraph"
message "OK"
hardware_id ""
values [] 0items

/diagnostics_toplevel_status.level

@ ok

diagnostics X
Diagnostics — Summary (ROS) @ : | Diagnostics - Summary (ROS) i B X /diagnostics_toplevel_status

diagnostic_msgs/msg/DiagnosticStatus @
1729678831.652000000 sec

level 1 (WARN)

name "/Health/RosGraph"

OK Filter OK Filter

health: Rosgraph::PublishFrequency::/camera_front_center/image_rgb Publisher sending slower... /Health/RosGraph Warning

health: Rosgraph::PublishFrequency::/chatter Publisher sending slower than promised deadline [Health/RosGraph/PublishFrequency Requir... message "Warning"
hardware_id ""

health: Rosgraph::Node::/camera_front_ceter Node OK: /camera_front_ceter /Health/RosGraph/Nodes OK v values [] 1item

v O /Health/RosGraph/PublishFrequency: Required
health: Rosgraph::Node::/tree_detector Node OK: /tree_detector publish frequencies not being met

key "/Health/RosGraph/PublishFrequency"
value "Required publish frequencies not being met"

health: Rosgraph::PublishFrequency::/camera_front_center/image_rgb ¢ | /Health/RosGraph/Nodes & : | /diagnostics_toplevel_status.level
health: Rosgraph::PublishFrequency::/camera_front_center/image_rgb /Health/RosGraph/Nodes

health: Rosgraph::PublishFrequency::/camera_front_center/image_rgb [Health/RosGraph/Nodes

Publisher sending slower than promised deadline OK

@ wARN

——o—o —o—o

e o o o o o o

12:16:30 12:17:00 12:17:30 12:18:00 12:18:30 12:19:00 12:19:30 12:20:00 12:20:30 12:21:00
== net.bytes_recv { interface: ethO0 } == net.bytes_sent { interface: ethO }

——%—o o
0B

vROS @&
Topic Pub Frequencies

17.5 Hz
15 Hz
12.5 Hz
10 Hz
7.5/HZ
SHz
2.5Hz
O Hz

12:16:30 12:17:00 12:17:30 12:18:00 12:18:30 12:19:00 12:19:30 12:20:00 12:20:30 12:21:00
== topic_statistics.pubHz { node: /camera_front_ceter, topic: /camera_front_center/image_rgb }

== topic_statistics.pubHz { node: /deadline_publisher, topic: /chatter }

== topic_statistics.pubHz { node: /foxglove_bridge, topic: /rosout }

== tnnir ctatictire nithH7 { nnda* Iraearanh manitar tanic: /diannnctice)

0B
12:16:30 12:17:00 12:17:30 12:18:00 12:18:30 12:19:00 12:19:30 12:20:00 12:20:30 12:21:00

== diskio.read { name: vda } == diskio.write { name: vda} == diskio.read { name: vdal}

== diskio.write { name: vdal} == diskio.read { name: vdb } == diskio.write { name: vdb }

Topic Receive Frequencies

5 Hz

AVAVAVAVAVAVAVAVAVAVAVAN

PRV AVAVAY] \/\f\/\ﬂ\ N/ \/\f\/\w\\/ \

3 Hz

2 Hz
1Hz

0 Hz
12:16:30 12:17:00 12:17:30 12:18:00 12:18:30 12:19:00 12:19:30 12:20:00 12:20:30 12:21:00

== topic_statistics.recvHz { node: /data_manager, topic: /chatter }
== topic_statistics.recvHz { node: /data_manager, topic: /diagnostics }
== topic_statistics.recvHz { topic: /diagnostics_agg, node: /data_manager }

== tanir ctatictice rarvH7 { nada: /data mananar tanir: Idiannnactice tanlaval ctatiie)

Conclusion

Observability saves the day

' B cConclusion

You didn’t need the resident expert!

Real time observability

Declared/programmed system expectations

Automatically monitored

Anybody on the team can know where the problem is

This is a way you scale your one-rockstar show to a larger team,
and make that rockstar more productive to boot

4

' B Conclusion

Thank you! Questions?

e Lotsmoretodo

e Please come chat
e Also, please try the code and interact on Github

o https://github.com/BonsaiRobotics/roscon2024 health sample
e Also,we're hiring

o bonsairobotics.ai/careers

4

https://github.com/BonsaiRobotics/roscon2024_health_sample
http://bonsairobotics.ai/careers

