
Open-RMF and the Challenge of

Resource Contention in Large-Scale

Robot Fleets
Arjo Chakravarty
arjoc@intrinsic.ai

Currently available Open-RMF features

Traffic Management

Task allocation

Task scheduling

Charging Schedules

?? Resource allocation

Resource Contention and Robots

- Lifts

- Parking spots

- Chargers

- Tool heads

- Carts

Resource deconfliction?

I need to charge. I can charge at

charging station 1 or station 2

I need to charge. I can charge

at charging station 2

Reservation Node in RMF

Fleet Adapter
Reservation

Node
I need to go to one of the

following places to

complete my current task

Reservation Node in RMF

Fleet Adapter
Reservation

Node
I need to go to one of the

following places to

complete my current task

I can’t immediately

provide a space please

proceed to the following

wait point.

If none of the places

are available

Reservation Node in RMF

Fleet Adapter
Reservation

Node
I need to go to one of the

following places to

complete my current task

I can’t immediately

provide a space please

proceed to the following

wait point.

Place gets freed up

Proceed to Your final

destination <here>

Reservation Node in RMF

Fleet Adapter
Reservation

Node
I need to go to one of the

following places to

complete my current task

Proceed to location x

If one of the places is

available

How it works internally

GoToPlace {

one_of: [p1, p2]

}

Robot 2 has task:

How it works internally

p1

Queue

p2

Queue

p3

Queue

Currently

serving

Enqued

r1 r3

GoToPlace {

one_of: [p1, p2]

}

How it works internally

GoToPlace {

one_of: [p1, p2]

}

p1

Queue

p2

Queue

p3

Queue

r2r2

Currently

serving

Enqued

r1 r3 r2

No free spot we add the

request to the queue

and assign a free spot.

How it works internally

GoToPlace {

one_of: [p1, p2]

}

p1

Queue

p2

Queue

p3

Queue

r2r2

Currently

serving

Enqued

r1 r3 r2

Lets say r3 finishes its

task.

How it works internally

GoToPlace {

one_of: [p1, p2]

}

p1

Queue

p2

Queue

p3

Queue

r2r2

Currently

serving

Enqued

r1 r2

Lets say r3 finishes its

task.

How it works internally

GoToPlace {

one_of: [p1, p2]

}

p1

Queue

p2

Queue

p3

Queue

Currently

serving

Enqued

r1

Lets say r3 finishes its

task.

We remove all

Pending r2 instances.

r2

How it works internally

GoToPlace {

one_of: [p1, p2]

}

p1

Queue

p2

Queue

p3

Queue

Currently

serving

Enqued

r1

Lets say r3 finishes its task.

We remove all

Pending r2 instances.

Note: If there are

dependencies, we will

traverse the wait graph.

r2

Caveats

- There must be at least the same number of parking spots as robots available.

- The node must be explicitly enabled.

- The queue is FiFo

Video Demonstration

In this example tinyRobot2 is

asked to go to the pantry

first.

tinyRobot1 is told it can go to

Either the lounge or the

pantry.

The reservation node

correctly allocates each

robot to its final destination.

Video Demonstration

http://drive.google.com/file/d/1MRkAljNXAr62C-V7aH76UuzBQEb-5tNd/view

To Enable

In your fleet configuration:

rmf_fleet:

name: "tinyRobot"

limits:

linear: [0.5, 0.75] # velocity, acceleration

angular: [0.6, 2.0] # velocity, acceleration

…

use_parking_reservations: True

To Enable

Also launch the reservation queue

manager.
<node pkg="rmf_reservation_node"

exec="queue_manager"></node>

Example Config Available in this PR:

https://github.com/open-rmf/rmf_demos/pull/212/files

https://github.com/open-rmf/rmf_demos/pull/212/files

Sneak Peek Of Next Gen Capabilities

Motivation

- We can check resource constraints at runtime but what if there are

tasks that have to be completed by some deadline?

- Example could be that there are robots waiting for their next charge

blocked by a counterpart that is reusing the same space for some other

task.

Introducing rmf_reservations

- Rust-based resource constrained schedule library

- Can be used at the task scheduling level

- Currently proof of concept is ready but exact APIs are unstable and will

change

- Submit a set of resource constraints and requests. Get back feasibility

immediately. Find optimal solution slowly.

- Paper presented at IROS 2024 outlining the algorithms.

- Unlike Google-OR tools our formulation does not need integer costs.

Next generation capabilities

I need to charge. I can charge at

charging station 1 from 3:00 to 4:00 or

station 2 from 3:20 to 4:20 Alternatives

Alternatives can have costs. For

instance we can use distance to charger

as a cost function.

Next generation capabilities

I need to charge. I can charge at

charging station 1 from 3:00 to 4:00 or

station 2 from 3:20 to 4:20 Alternatives

Next generation capabilities

Problem Specification

Ordered

SAT

Use the Lemma

to augment spec

Yes

No

Give last good

solution if it exists

We can tell feasibility on first solve

Arxiv Link

To Paper

Next generation capabilities

Feasibility via SAT For problems with obvious solutions. For a

request size of n there are n alternatives. I.E for 40 requests

there are 40 alternatives each

Questions?

Arxiv Link

To Paper
RMF

Reservations

Source code

PR

Documenting

How to use in

current

generation

	Open-RMF and the Challenge of Resource Contention in Large-Scale Robot Fleets
	Slide Number 2
	Currently available Open-RMF features
	Slide Number 4
	Resource Contention and Robots
	Resource deconfliction?
	Reservation Node in RMF
	Reservation Node in RMF
	Reservation Node in RMF
	Reservation Node in RMF
	How it works internally
	How it works internally
	How it works internally
	How it works internally
	How it works internally
	How it works internally
	How it works internally
	Caveats
	Video Demonstration
	Video Demonstration
	To Enable
	To Enable
	Sneak Peek Of Next Gen Capabilities
	Motivation
	Introducing rmf_reservations
	Next generation capabilities
	Next generation capabilities
	Next generation capabilities
	Next generation capabilities
	Questions?

