
Authorized for Public Release; Distribution is Unlimited

ros2_j1939
J1939 CAN Device Support in ROS2

Arturo Saucedo
Isaac Blankenau



Authorized for Public Release; Distribution is Unlimited

Goal
● Semi-autonomous heavy construction equipment
● Operate in undefined and uncontrolled environments 

with degraded communications

Previous work
● Autonomous Navigation and Mapping in GNSS-denied 

unstructured environments 

Challenges
● Unstructured outdoor environments 
● GNSS-denied
● Communication limitations 
● Active terrain modification 

Robotics for 

Engineer 

Operations

2



Authorized for Public Release; Distribution is Unlimited

Robotics for 

Engineer 

Operations

3

http://www.youtube.com/watch?v=09QAK1RD1tI


Authorized for Public Release; Distribution is Unlimited

Vision Bringing Autonomy to Heavy Equipment

● Existing platforms weren’t designed with robotics in 

mind.

● Modern ECUs manage built-in sensors and by-wire 

controls.

● Key feedback sensors for autonomy (e.g., hydraulic 

pressure, piston travel) are often missing.

● The ROS2 ecosystem lacks off-the-shelf drivers for these 

specialized sensors.

● Integrating new sensors requires accounting for rugged 

environmental conditions and wiring challenges.

Problem

Solution

Why it matters

4



Authorized for Public Release; Distribution is Unlimited

Vision

Problem

Solution

Why it matters

J1939 Bridge for ROS2

A communication interface between ROS2 

and the J1939 CANBus protocol, enabling 

robots to interact with commercial vehicle 

systems.

5



Authorized for Public Release; Distribution is Unlimited

Vision

Problem

Solution

Why it matters

Benefits

● Platform Monitoring: Access built-in 

platform sensors and controls for monitoring 

and control without extensive modifications.

● Seamless Integration: Use J1939-compatible 

sensors without the need for custom drivers.

● Rugged and Reliable: Components are ready 

for outdoor, off-road robots requiring 

durability.

6



Authorized for Public Release; Distribution is Unlimited

CAN Bus

The Controller Area Network (CAN)

● Complex Comms: In the 80s, the auto industry faced challenges 

with increasingly complicated intra-vehicle communications.

● Lacking Protocols: Existing protocols not really suitable for use 

in passenger vehicles.

● Solution: CAN was developed, featuring differential signaling, 

priority-based arbitration, and decentralized structure.

Today, CAN is the backbone of communication between the many 

ECUs (Electronic Control Units) in modern vehicles.

7

Mercedes-Benz was the first auto manufacturer to use 
the CAN bus in a passenger vehicle

Bosch engineers were instrumental in developing CAN



Authorized for Public Release; Distribution is Unlimited

CAN Bus

CAN for Robotics

● Simplified Wiring: Reduces cabling complexity and cost by 

allowing devices to share a bus.

● Real-Time, Collision-Free Communication: Priority-based 

arbitration, ensuring reliable and timely transmission.

● By-Wire Control: Many modern vehicles use CAN for by-wire 

systems...

● Rugged Sensors: Access to a wide range of sensors suitable for 

use in extreme conditions (temperature, vibration, moisture).

8



Authorized for Public Release; Distribution is Unlimited

J1939

What is J1939?

● Developed by the Society of Automotive Engineers (SAE).

● Standardized Message Set: Includes common messages 

(e.g., joystick data, engine RPM, temperature).

● Proprietary Addresses: Allows OEMs to define their own 

messages within a reserved range.

● Message Structure:

○ 29-bit identifier (includes PGN, priority, source, and 

destination addresses).

○ 8-byte data payload.

● DBC Files: File format used to define CAN message 

structure, or “how to read the CAN messages”

9



Authorized for Public Release; Distribution is Unlimited

J1939

Current State in ROS2

Complete solution does not exist (small parts do)

● New Eagle raptor-dbw-ros2: Integrates with New Eagle’s 

drive by wire kit. It contains a great J1939 DBC parser. 

● Autoware Ros2_socketcan: ROS2 wrapper around linux 

kernel socket can, allowing read and write raw frames on 

CAN bus. 

● ros2_canopen: Feature-rich CANOpen bridge for ROS2 & 

ROS2 Control. Industrial-facing.

Missing ros2_canopen style driver for J1939

10



Authorized for Public Release; Distribution is Unlimited

Hardware Agnostic Driver

● Generate: J1939 device publishes to the CAN 

line

● Receive: ros2_socketcan receives messages

● Listen: Generic CAN driver configured to filter 

incoming messages by device (source ID)

● Parse: User-provided dbc is used to parse 

incoming messages with can_dbc_parser

● Publish: Generic CAN driver publishes human-

readable data in auto-configured ros2 topics.

11

Overview

Configuration

Data Handling

Sensors

ros2_control

Generic CAN 
Driver



Authorized for Public Release; Distribution is Unlimited

Node Config

● Generic CAN driver node requires basic 

configuration.

● Device name: e.g. IMU_blade

● Device source ID: e.g. 227

● DBC file: e.g. my_IMU.dbc

12

Overview

Configuration

Data Handling

Sensors

ros2_control

Generic CAN 
Driver



Authorized for Public Release; Distribution is Unlimited

Parsing

● Filtering: Incoming CAN frame’s device ID 

is compared to the ID specified in the 

driver’s config. 

● Lookup: If they match, the driver looks for 

the message in the dbc and translates the 

result.

● Message: The result is turned into a 

modified diagnostic-type key-value pair 

message.

13

Overview

Configuration

Data Handling

Sensors

ros2_control

Generic CAN 
Driver



Authorized for Public Release; Distribution is Unlimited

Publishing

● Publishers: Driver automatically configures the 

necessary publishers and topics for the given 

DBC file.

● Topics: Automatically named after message 

names specified in the DBC:

Topic: /device_name/message_name

14

Overview

Configuration

Data Handling

Sensors

ros2_control

Generic CAN 
Driver



Authorized for Public Release; Distribution is Unlimited

Pre-configured sensors

● Sensor-specific: We’ve also included some 

modified drivers for specific sensors we’ve 

encountered (IMUs, encoders, pressure sensors)

● Types: These drivers use specific ros2 message 

types (Imu, JointState, FluidPressure).

15

Overview

Configuration

Data Handling

Sensors

ros2_control
*JointState message 

type!

Topic:

/arm/joint_state

Generic CAN 
Driver



Authorized for Public Release; Distribution is Unlimited

Generic CAN 
Driver

16

Overview

Configuration

Data Handling

Sensors

ros2_control

Hardware Interface

● ros2_control: Our plugin bridges 

Linux level socket can through ROS2 

control.

● Generic: A ros2_control hardware 

interface for CAN J1939 sensors. 

● Bridge: Each interface spins up its 

own linux socket can connection.

● Params: Interface name, DBC 

file path, source id, filter list, 

priority



Authorized for Public Release; Distribution is Unlimited

Control of Compact Track Loader

By-Wire Operation: We demonstrated by-

wire control of critical vehicle functions

Challenges: Lack of documentation, 

multiple Buses, not all functionality on 

CANBus

Control: Access to control of joystick 

messages, polynomial fit of 5-bar linkage, 

blade Stabilization

Navigation: Nvblox and nav2

21

http://www.youtube.com/watch?v=As2JI2FULVY


Authorized for Public Release; Distribution is Unlimited

Getting 
Started

What You’ll Need:

Now that we’ve shown a working implementation, 

here’s what you’ll need to get started

● A J1939 Device: A device that you want to 

interface with, typically a sensor or controller

● DBC File: Defines the structure of CAN 

messages.

● CAN Interface: CAN Pi-Hat, PeakCAN, USB 

CAN Reader, etc.

● Can-utils: A Computer with socket can.

● ROS2: An install of ros2 (devcontainer) to 

develop and run your nodes.

22

Setup

Connect

Test



Authorized for Public Release; Distribution is Unlimited

Getting 
Started

Connect to a CAN network:

● Wiring: Signal wire should be twisted pair, with a 120 Ohm 

terminating resistor

● Socket: (Lawicel) CAN USB device run the following in 

terminal

sudo slcand -o -c -f -s5 /dev/ttyUSB0 can0

sudo ifconfig can0 up

● Verify: Candump your interface

candump can0

23

Setup

Connect

Test



Authorized for Public Release; Distribution is Unlimited

Getting 
Started

Connect to a VCAN network:

● Socket: Set up the interface

sudo ip link add dev vcan0 type vcan

sudo ip link set vcan0 up type vcan

● Verify: Play back a log file through the virtual interface

canplayer -i your_can_recording.log vcan0=can0 -v

24

Setup

Connect

Test



Authorized for Public Release; Distribution is Unlimited

Getting 
Started

Devcontainer Demos:

● Setup: Follow devcontainer readme for setup instructions.

● Demos: We include some simple demo robots for different 

types of joints/sensors (as well as candump log files and 

DBCs).

● ros2_control.xacro: This is where you load and configure 

the hardware plugins used by ros2_control for the robot. 

Make sure to use the correct interface name and DBC file

● r_bot.launch.py: Launch file for the demo, simply run:

ros2 launch r_bot r_bot.launch.py

Just like that, you can take J1939 sensor data and integrate it 

with a basic robot in ros2_control

25

Setup

Connect

Test



Authorized for Public Release; Distribution is Unlimited

Additional Utilities

Documentation, scripts, and examples in GitHub, including

● How to setup a CAN device

● How to rename a CAN device

● How to set up our devcontainer

● How to replace/spoof a J1939 device on an existing network

● Set up a CAN socket with PeakCan & Lawicel USB on host machine

● Some pointers with ros2_control

26



Authorized for Public Release; Distribution is Unlimited

What we’ve shown: A barebones ros2 driver for any J1939 sensor, 

either as a standalone node or as a plugin for ros2_control. (+ 

centralized documentation!)

An implementation on real hardware!

What you need: A J1939 sensor, the accompanying .DBC, and ros2.

What this means: Significantly lower barrier to entry for roboticists 

who want to use robust commercial-off-the-shelf sensors, or 

interact with existing J1939 CAN networks.

Summary

27



Authorized for Public Release; Distribution is Unlimited

Add Sensors and Interfaces (DBCs): Found a DBC for your hardware? Submit a request to 

add it, along with any packages for hardware not yet covered.

Don’t violate copyrights or NDAs (e.g., uploading the full SAE J1939 standard). However, 

manufacturer-provided or reverse-engineered DBCs are welcome.

Help us build a Central Repository, coalescing J1939 hardware and resources in one place 

to make integration easier for the community.

Github: https://github.com/psaucedoa

How to Contribute

28

https://github.com/psaucedoa


Authorized for Public Release; Distribution is Unlimited

Contact Us

Arturo Saucedo Isaac Blankenau

Research Aerospace Engineer Research Mechanical Engineer

arturo.saucedo@usace.army.mil isaac.j.blankenau@usace.army.mil


	ros2_j1939
J1939 CAN Device Support in ROS2
	Robotics for 
Engineer 
Operations
	Robotics for 
Engineer 
Operations
	Vision

	Vision

	Vision

	CAN Bus
	CAN Bus
	J1939
	J1939
	Generic CAN Driver

	Generic CAN Driver

	Generic CAN Driver

	Generic CAN Driver

	Generic CAN Driver

	Generic CAN Driver

	Control of Compact Track Loader
	Getting Started
	Getting Started
	Getting Started
	Getting Started
	Additional Utilities
	Summary
	How to Contribute
	Slide Number 29

