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Goal
● Semi-autonomous heavy construction equipment
● Operate in undefined and uncontrolled environments 

with degraded communications

Previous work
● Autonomous Navigation and Mapping in GNSS-denied 

unstructured environments 

Challenges
● Unstructured outdoor environments 
● GNSS-denied
● Communication limitations 
● Active terrain modification 

Robotics for 

Engineer 

Operations
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Robotics for 

Engineer 

Operations
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http://www.youtube.com/watch?v=09QAK1RD1tI
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Vision Bringing Autonomy to Heavy Equipment

● Existing platforms weren’t designed with robotics in 

mind.

● Modern ECUs manage built-in sensors and by-wire 

controls.

● Key feedback sensors for autonomy (e.g., hydraulic 

pressure, piston travel) are often missing.

● The ROS2 ecosystem lacks off-the-shelf drivers for these 

specialized sensors.

● Integrating new sensors requires accounting for rugged 

environmental conditions and wiring challenges.

Problem

Solution

Why it matters
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Vision

Problem

Solution

Why it matters

J1939 Bridge for ROS2

A communication interface between ROS2 

and the J1939 CANBus protocol, enabling 

robots to interact with commercial vehicle 

systems.
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Vision

Problem

Solution

Why it matters

Benefits

● Platform Monitoring: Access built-in 

platform sensors and controls for monitoring 

and control without extensive modifications.

● Seamless Integration: Use J1939-compatible 

sensors without the need for custom drivers.

● Rugged and Reliable: Components are ready 

for outdoor, off-road robots requiring 

durability.
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CAN Bus

The Controller Area Network (CAN)

● Complex Comms: In the 80s, the auto industry faced challenges 

with increasingly complicated intra-vehicle communications.

● Lacking Protocols: Existing protocols not really suitable for use 

in passenger vehicles.

● Solution: CAN was developed, featuring differential signaling, 

priority-based arbitration, and decentralized structure.

Today, CAN is the backbone of communication between the many 

ECUs (Electronic Control Units) in modern vehicles.
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Mercedes-Benz was the first auto manufacturer to use 
the CAN bus in a passenger vehicle

Bosch engineers were instrumental in developing CAN
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CAN Bus

CAN for Robotics

● Simplified Wiring: Reduces cabling complexity and cost by 

allowing devices to share a bus.

● Real-Time, Collision-Free Communication: Priority-based 

arbitration, ensuring reliable and timely transmission.

● By-Wire Control: Many modern vehicles use CAN for by-wire 

systems...

● Rugged Sensors: Access to a wide range of sensors suitable for 

use in extreme conditions (temperature, vibration, moisture).
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J1939

What is J1939?

● Developed by the Society of Automotive Engineers (SAE).

● Standardized Message Set: Includes common messages 

(e.g., joystick data, engine RPM, temperature).

● Proprietary Addresses: Allows OEMs to define their own 

messages within a reserved range.

● Message Structure:

○ 29-bit identifier (includes PGN, priority, source, and 

destination addresses).

○ 8-byte data payload.

● DBC Files: File format used to define CAN message 

structure, or “how to read the CAN messages”
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J1939

Current State in ROS2

Complete solution does not exist (small parts do)

● New Eagle raptor-dbw-ros2: Integrates with New Eagle’s 

drive by wire kit. It contains a great J1939 DBC parser. 

● Autoware Ros2_socketcan: ROS2 wrapper around linux 

kernel socket can, allowing read and write raw frames on 

CAN bus. 

● ros2_canopen: Feature-rich CANOpen bridge for ROS2 & 

ROS2 Control. Industrial-facing.

Missing ros2_canopen style driver for J1939
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Hardware Agnostic Driver

● Generate: J1939 device publishes to the CAN 

line

● Receive: ros2_socketcan receives messages

● Listen: Generic CAN driver configured to filter 

incoming messages by device (source ID)

● Parse: User-provided dbc is used to parse 

incoming messages with can_dbc_parser

● Publish: Generic CAN driver publishes human-

readable data in auto-configured ros2 topics.

11

Overview

Configuration

Data Handling

Sensors

ros2_control

Generic CAN 
Driver
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Node Config

● Generic CAN driver node requires basic 

configuration.

● Device name: e.g. IMU_blade

● Device source ID: e.g. 227

● DBC file: e.g. my_IMU.dbc
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Parsing

● Filtering: Incoming CAN frame’s device ID 

is compared to the ID specified in the 

driver’s config. 

● Lookup: If they match, the driver looks for 

the message in the dbc and translates the 

result.

● Message: The result is turned into a 

modified diagnostic-type key-value pair 

message.
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Publishing

● Publishers: Driver automatically configures the 

necessary publishers and topics for the given 

DBC file.

● Topics: Automatically named after message 

names specified in the DBC:

Topic: /device_name/message_name
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Pre-configured sensors

● Sensor-specific: We’ve also included some 

modified drivers for specific sensors we’ve 

encountered (IMUs, encoders, pressure sensors)

● Types: These drivers use specific ros2 message 

types (Imu, JointState, FluidPressure).
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Overview

Configuration

Data Handling

Sensors

ros2_control
*JointState message 

type!

Topic:

/arm/joint_state

Generic CAN 
Driver
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Generic CAN 
Driver
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Overview

Configuration

Data Handling

Sensors

ros2_control

Hardware Interface

● ros2_control: Our plugin bridges 

Linux level socket can through ROS2 

control.

● Generic: A ros2_control hardware 

interface for CAN J1939 sensors. 

● Bridge: Each interface spins up its 

own linux socket can connection.

● Params: Interface name, DBC 

file path, source id, filter list, 

priority
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Control of Compact Track Loader

By-Wire Operation: We demonstrated by-

wire control of critical vehicle functions

Challenges: Lack of documentation, 

multiple Buses, not all functionality on 

CANBus

Control: Access to control of joystick 

messages, polynomial fit of 5-bar linkage, 

blade Stabilization

Navigation: Nvblox and nav2

21

http://www.youtube.com/watch?v=As2JI2FULVY
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Getting 
Started

What You’ll Need:

Now that we’ve shown a working implementation, 

here’s what you’ll need to get started

● A J1939 Device: A device that you want to 

interface with, typically a sensor or controller

● DBC File: Defines the structure of CAN 

messages.

● CAN Interface: CAN Pi-Hat, PeakCAN, USB 

CAN Reader, etc.

● Can-utils: A Computer with socket can.

● ROS2: An install of ros2 (devcontainer) to 

develop and run your nodes.

22

Setup

Connect

Test
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Getting 
Started

Connect to a CAN network:

● Wiring: Signal wire should be twisted pair, with a 120 Ohm 

terminating resistor

● Socket: (Lawicel) CAN USB device run the following in 

terminal

sudo slcand -o -c -f -s5 /dev/ttyUSB0 can0

sudo ifconfig can0 up

● Verify: Candump your interface

candump can0
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Getting 
Started

Connect to a VCAN network:

● Socket: Set up the interface

sudo ip link add dev vcan0 type vcan

sudo ip link set vcan0 up type vcan

● Verify: Play back a log file through the virtual interface

canplayer -i your_can_recording.log vcan0=can0 -v
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Getting 
Started

Devcontainer Demos:

● Setup: Follow devcontainer readme for setup instructions.

● Demos: We include some simple demo robots for different 

types of joints/sensors (as well as candump log files and 

DBCs).

● ros2_control.xacro: This is where you load and configure 

the hardware plugins used by ros2_control for the robot. 

Make sure to use the correct interface name and DBC file

● r_bot.launch.py: Launch file for the demo, simply run:

ros2 launch r_bot r_bot.launch.py

Just like that, you can take J1939 sensor data and integrate it 

with a basic robot in ros2_control
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Additional Utilities

Documentation, scripts, and examples in GitHub, including

● How to setup a CAN device

● How to rename a CAN device

● How to set up our devcontainer

● How to replace/spoof a J1939 device on an existing network

● Set up a CAN socket with PeakCan & Lawicel USB on host machine

● Some pointers with ros2_control

26
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What we’ve shown: A barebones ros2 driver for any J1939 sensor, 

either as a standalone node or as a plugin for ros2_control. (+ 

centralized documentation!)

An implementation on real hardware!

What you need: A J1939 sensor, the accompanying .DBC, and ros2.

What this means: Significantly lower barrier to entry for roboticists 

who want to use robust commercial-off-the-shelf sensors, or 

interact with existing J1939 CAN networks.

Summary

27
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Add Sensors and Interfaces (DBCs): Found a DBC for your hardware? Submit a request to 

add it, along with any packages for hardware not yet covered.

Don’t violate copyrights or NDAs (e.g., uploading the full SAE J1939 standard). However, 

manufacturer-provided or reverse-engineered DBCs are welcome.

Help us build a Central Repository, coalescing J1939 hardware and resources in one place 

to make integration easier for the community.

Github: https://github.com/psaucedoa

How to Contribute

28

https://github.com/psaucedoa
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Contact Us

Arturo Saucedo Isaac Blankenau

Research Aerospace Engineer Research Mechanical Engineer

arturo.saucedo@usace.army.mil isaac.j.blankenau@usace.army.mil
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