

How is my robot? -On the state of **ROS Diagnostics**

Christian Henkel, Oct 23 2024

ROSCon 2024, Odense

What is ros/diagnostics?

- Quickly observe the current state of your robot
- Deeper analysis of performance parameters
- Historic logging of these information

https://www.pickpik.com/power-plant-control-room-electric-old-instruments-controller-1726

7 How is my robot? - On the state of ROS Diagnostics | Christian Henkel | ROSCon 2024

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Collecting evidence Overview I

diagnostic updater

- Collect information on the robot state
- Has a state [OK, WARN, ERROR]
- Can have a summary
- Can have additional key-value pairs

```
diagnostic_updater::DiagnosticStatusWrapper
    status;
status.summary(
    diagnostic_msgs::msg::DiagnosticStatus::WARN,
    "Motor RPM may be too low.");
status.add("Motor RPM", rpm);
publish(status);
```

diagnostic common diagnostics

- Premade diagnostic features
- Including NTP, CPU, RAM, ...

Getting and Overview Overview II

diagnostic aggregator

- Summarize information according to different rules, e.g.

analyzers:

ros__parameters:

path: Aggregation

arms:

```
type: diagnostic_aggregator/GenericAnalyzer
```

path: Arms

```
startswith: [ '/arms' ]
```

legs:

```
type: diagnostic_aggregator/GenericAnalyzer
path: Legs
```

startswith: ['/legs']

<u>rqt robot monitor</u>

- **NOT** in the ros/diagnostics repo
- **NO** diagnostics in the name How is my robot? - On the state of ROS Diagnostics | Christian Henkel | ROSCOR

```
How is my robot? - On the state of ROS Diagnostics | Christian Henkel | ROSCon 2024
```

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

rqt_robot_monitor_RobotMonitor - rqt 🛛 – 🗖 😣				
Robot Monitor Alternative view			DØ	- 0
Error Device		Message		*
/Aggregation/Sensors		Error		
/Aggregation/Sensors/ sensors left cam		Error		
/Aggregation/Topology/Left		Error		*
Warned Device		Message		
\land /Aggregation/Arms		Warning		
🛆 /Aggregation/Arms/ arms right motor		Warning		
\land /Aggregation/Legs		Warning		
🛕 /Aggregation/Legs/ legs ri	ght motor	Warning		Ŧ
All devices	Message			
🝷 🖨 Aggregation	Error			
🕨 \Lambda Legs	Warning			
Motors	Warning			
👻 🗢 Topology	Error			
👻 📮 Left	Error			
arms left motor	OK			
legs left motor	OK			
Sensors left cam	Error			
🕨 🖄 Right	Warning			
Sensors	Error			
🕨 🗥 Arms	Warning			
< old Last message received 0 seconds ago new>				
Pause Pause				

Upcoming Features What we are working on

CLI tools for diagnostics

- <u>PR 328</u>
- Verbs: list, echo, csv

More documentation and tutorials

- <u>PR 399</u>
- And more

CONVINCE .

5

LTL (Linear temporal logic)-based monitoring

- CONVINCE Monitoring
- Check system state against desired properties

(My) Diagnostics Philosophy Best Practices I

- Main purpose: Observe the current state of the robot
- Think of it as a control panel where an operator has all the information they need
- Try to limit the metrics to <10, ideally 2-3 per component
- Warnings are states that are unusual but allow continued operation
- Errors indicate states that do not allow the robot to operate further and shall be immediately addressed
- Think about a logging and diagnostics concept in your team and document it

Comparison to other concepts Best Practices II

Diagnostics vs

- Logging
 - Logging is (a lot) more verbose
 - o Captures the inner state of a SW component
 - Are (usually) for later consumption and analysis
- Bagfiles
 - $\circ~$ It is useful to record diagnostics in bagfiles
 - o Will also contain (non-critical) state info
- Testing
 - $\circ~$ Diagnostics help to find causes for failing test more quickly
 - $\circ~$ But don't replace testing
 - Crucial diagnostics mat be tested themselves

Antipatterns Best Practices III

- In general, diagnostics are not meant to be used functionally
 - The error handling that a robotic system does by itself should not depend on diagnostics
 - Diagnostics should help a human observer or technician to understand a problem that was not recovered from
- The "right" amount of red
 - Diagnostics must be tuned in a way such that they really mean a problem
 - Otherwise, human observers get used to seeing error messages and don't recognize critical ones
 - In a similar theme, warnings should not be too frequent to not become meaningless
- Diagnostics must be received
 - Diagnostics are meant as a communication method from robot to human
 - So, in fully autonomous systems, they must be logged correctly and evaluated retroactively
 - $\circ~$ It is also worth to differentiate between roles,
 - for example, if an end user will see and/or understand diagnostics content or
 - if it must only be consumed by trained technicians

What we learned today Summary

<u>diagnostic</u> aggregator: Aggregates diagnostic messages from different sources into a single message.

diagnostic_analysis: Not ported to ROS2 yet

#contributions-welcome

<u>diagnostic common diagnostics</u>: Predefined nodes for monitoring the Linux and ROS system.

<u>diagnostic updater</u>: Base classes to publishing custom diagnostic messages for Python and C++.

self_test: Tools to perform self tests on nodes.

- Diagnostics are a useful tool for robotic systems
- More important than the technical implementation is the content
- Think about a logging and diagnostics concept in your team and document it

WARANDPEAS.COM

How was my robot?

Christian Henkel Bosch Research O<u>ct2034</u> Cros/diagnostics

Any contributions are very welcome

- manageable size of codebase
- efficient Cl
- quickish feedback

