Executors in ROS 2

Michael Carroll William Woodall

Software Engineer @ Intrinsic Software Engineer @ Intrinsic
mjcarroll@intrinsic.ai wjwwood@intrinsic.ai

@mijcarroll on all the things @wjwwood on all the things




Outline

@® Conceptual Overview of an Executor in ROS 2
e Types of Executors in ROS 2
e Performance Improvements Due to Recent Work

e Picking an Executor for your Application




Primitive Entities

Timers

Guard Conditions
Subscriptions (inter-
process)

Service Servers/ Clients

What are “Entities”

Derived Entities

Waitables

QoS Events
Intra-process
Subscriptions

Action Servers/ Clients
etc...




Executor Responsibilities

. Collect entities that should be waited on,
and manage their ownership

. Wait for one or more things to be ready

. Decide what to execute next (scheduling)

. Dispatching the entities’task for execution




What does an Executor do ¢t&

onGoal O nextCme processOdomO

3) execute

A

rcl — ROS Client Support Library

[TT]

2) take

|

L&A LR

/goalﬁ /cmdﬂ /odomﬂ

source: https://docs.ros.org/en/rolling/ Concepts/ Intermediate/ About-Executors.html
credit: (@ralph-lange, others



https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html

More about Waitables @\

. class MyWaitable : public rclcpp::Waitable
You can write your own! A
/...

Waitables are the base of bool

is_ready(const rcl wait _set t & wait_set) override
other complex entities et
agn void
Guard Conditions can be set_on_ready callback( |
std: :function<void(size_t, int)> callback) override
used to interact with other 7" ™’

std: :shared_ptr<void>

take data() override
cvent systems petaral) <

Waitables can be used as void

execute (const std::shared ptr<void> & data) override

a Guard Condition + data WA
::ROS

/...




Callback Groups

= Grouping of Entities with

[ Executor

Callback s '
Informs the Executor [

| has |

Mutually Exclusive ﬂ [ Reentrant

about what can be
executed and when have have

Designed to solve multi- Entities with Entities with
threading issues Callbacks Callbacks

Callback Groups Callback Groups




Collecting Entities to Wait |!

Executor operates on Waiting is interrupted when...
Callback Groups, not Nodes = Executor is explicitly interrupted
Executor has weak references o e.g.ctrl-c, executor.cancel(),

to Callback Groups, which ROS shutdown, etc.

have weak referencesto Entities are added to, or removed
from, a Callback Group

Entities, until you wait...
Executor will also extend the Callback Groups are added to, or
lifetime of Entities while

executing

removed from, an Executor
Or when one or more of the
Entities are ready



Waiting @

Multiple approaches:

= WaitSet
0 Collect “handles”to entities, pass them to rmw to block
= (Callbacks

0 Setup rmw to call our function when the entity is ready




Why not <event library>? @

The executor is just yet another implementation of the proactor
design pattern just like libasio, libuv, etc., but:

Waiting on the middleware isn’t easy to do, unless you ...

Write your own “io loop/ context” for the event libraries, but this
isn’t easy, it’s the hard part where all the dragons are 3

Hard to replace callback groups with existing concepts in the
event libraries, e.g. sfrandsin libasio are similar but insufficient




Why not <event library>7

Sharing threads lead to starvation due to user locking:
Nodelet's make it difficult to use a shared thread-pool efficiently:
e Multi-Threaded nodelet + User locks = Blocked thread-pool threads

Ready to be Serviced

Thread 1 Thread 2
Node 1/ MNode 1/ Node 2/
Callback 1 Callback 2 Callback 1 Node 1/ Node 1/

Callback 1 Callback 1

. Executing, but Blocking on
Waiting Starved Holding Lock  Lock

source: https://roscon.ros.org/ 2014/ wp-content/uploads/ ROSCON-2014-Why-you-want-to-use-ROS-
2.pdf



https://roscon.ros.org/2014/wp-content/uploads/2014/07/ROSCON-2014-Why-you-want-to-use-ROS-2.pdf
https://roscon.ros.org/2014/wp-content/uploads/2014/07/ROSCON-2014-Why-you-want-to-use-ROS-2.pdf

Existing executors have existing
scheduling algorithms e

You might want your own, areregieer
executor i1s intended to be
extended (work in progress)
Custom executors allow for
different scheduling and things

like batching

source: https://docs.ros.org/en/rolling/ Concepts/Intermediate/ About-Executors.html# scheduling-
semantics



https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html#scheduling-semantics
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html#scheduling-semantics

Execution

2

processOdomO

3) execute

. Once the entity is ready, and the

executor is not busy... N
A

. Take any data associated with
2) take

the entity for the callback
. Execute the user-defined

callback, passing the taken data




Types of Executors (cpp) E

Wait

. Execution
Mechanism

SingleThreadedExecutor Single Thread in wait loop

MultiThreadedExecutor WaitSet Multi-Threaded in wait loop

EventsExecutor Single Thread threaded TimerManager

:::ROS




Events Executor

B SingleThreadedExecutor [Jf§ MultiThreadedExecutor StaticSingleThreadedExecutor ] EventsExecutor

GO0

CPU [%] Average Latency [us]

source: https://discoursetros.org/ t/the-ros-2-c-executors/38296 34
eredit: Alberto Soragna (@alsore) June 20727 Wpseudo-random system with ~40 publishers and )
~70 subscriptions spread across 8 executors eoo R O S
[ X N J



https://discourse.ros.org/t/the-ros-2-c-executors/38296

Recent Improvements

Unified SingleThreadedExecutor and
StaticSingleThreadedExecutors

Implemented rclcpp::WaitSet
Improved performance of “Entity Collection” with double buffering




Picking an Executor

Consider your workload... do you prioritize:
0o Low Latency
o High Throughput
0o Deterministic Execution
No “silver bullet”
EventsExecutor for responsive and performant option
MultiThreadedExecutor to utilize multi-core systems

Use multiple executors if needed




Impact of Callback Groups ,:‘?’-..

MutuallyExclusiveCallbackGroup ’s cause a lot of work in entity
collection when used with the multi -threaded executors
[1 Avoid this by using a ReentrantCallbackGroup ifappropriate or
multiple callback groups if not
The default Callback Group (if you don’t specify one) is a single
MutuallyExclusiveCallbackGroup in order to keep with ROS 1’s

behavior and for a safe default




Alternative: Use WaitSet

The introduction of rclcpp::WaitSet grew out of a request to not use

Executors at all and handle waiting and execution entirely within user

code.

See examples:

https://github.com/ros2/examples/blob/rolling/ rclepp/topics/ minimal subscriber/static_wait_set subscriber.cpp



https://github.com/ros2/examples/blob/rolling/rclcpp/topics/minimal_subscriber/static_wait_set_subscriber.cpp

Thanks!

Special thanks to...

Janosch Machowinski Alberto Soragna
@jmachowinski on GitHub @alsora on GitHub
@ Cellumation GmbH @ iRobot

Has a talk right after this one!

|

INtrinsic




	Executors in ROS 2
	Outline
	What are “Entities”
	Executor Responsibilities
	What does an Executor do
	More about Waitables
	Callback Groups
	Collecting Entities to Wait
	Waiting
	Why not <event library>?
	Why not <event library>?
	Deciding what to Execute
	Execution
	Types of Executors (cpp)
	Events Executor
	Recent Improvements
	Picking an Executor
	Impact of Callback Groups
	Alternative: Use WaitSet
	Thanks!

