
Exe c utors in ROS 2

Micha e l Ca rroll

Software Engineer @ Intrinsic

mjcarroll@intrinsic.ai

@mjcarroll on all the things

Willia m Wooda ll

Software Engineer @ Intrinsic

wjwwood@intrinsic.ai

@wjwwood on all the things

Out line

● Conceptual Overview of an Executor in ROS 2

● Types of Executors in ROS 2

● Performance Improvements Due to Recent Work

● Picking an Executor for your Applicat ion

Wha t a re “Ent it ie s”

Primitive Entities

▪ Timers

▪ Guard Condit ions

▪ Subscript ions (inter-

process)

▪ Service Servers/ Clients

Derived Entities

▪ Waitables

▪ QoS Events

▪ Intra-process

Subscript ions

▪ Action Servers/ Clients

▪ etc…

Exe cutor Re spons ibilit ie s

1. Collect ent it ies that should be waited on,

and manage their ownership

2 . Wait for one or more things to be ready

3. Decide what to execute next (scheduling)

4 . Dispatching the ent it ies’ task for execut ion

Wha t doe s a n Exe cutor do

source: https:/ / docs.ros.org/ en/ rolling/ Concepts/ Intermediate/ About-Executors.html

credit : @ralph-lange, others

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html

More a bout Wa it a ble s

▪ You can write your own!

▪ Waitables are the base of

other complex ent it ies

▪ Guard Conditions can be

used to interact with other

event systems

▪ Waitables can be used as

a Guard Condition + data

class MyWaitable : public rclcpp::Waitable
{
public:

// ...
bool
is_ready(const rcl_wait_set_t & wait_set) override
{ /* ... */ }

void
set_on_ready_callback(
std::function<void(size_t, int)> callback) override

{ /* ... */ }

std::shared_ptr<void>
take_data() override
{ /* ... */ }

void
execute(const std::shared_ptr<void> & data) override
{ /* ... */ }
// ...

};

Reentrant

Callback Groups

Mutually Exclusive

Callback Groups

Ca llba ck Groups

▪ Grouping of Entities with

Callback s

▪ Informs the Executor

about what can be

executed and when

▪ Designed to solve multi -

threading issues

Executor

Mutually Exclusive

Callback Groups

Reentrant

Callback Groups

…has

Entities with

Callbacks

Entities with

Callbacks

have have

Colle c t ing Ent it ie s t o Wa it

▪ Executor operates on

Callback Groups , not Nodes

▪ Executor has weak references

to Callback Groups, which

have weak referencesto

Ent it ies, unt il you wait…

▪ Executor will also extend the

lifetime of Ent it ies while

execut ing

Waiting is interrupted when…

▪ Executor is explicit ly interrupted

□ e.g. ctrl-c, executor.cancel(),

ROS shutdown, etc.

▪ Entit ies are added to, or removed

from, a Callback Group

▪ Callback Groups are added to, or

removed from, an Executor

▪ Or when one or more of the

Entit ies are ready

Wa it ing

Multiple approaches:

▪ WaitSet

□ Collect “handles” to ent it ies, pass them to rmw to block

▪ Callbacks

□ Set up rmw to call our funct ion when the ent ity is ready

Why not <e ve nt libra ry>?

The executor is just yet another implementation of the proactor

design pat tern just like libasio, libuv, etc., but :

▪ Wait ing on the middleware isn’t easy to do, unless you …

▪ Write your own “io loop/ context” for the event libraries, but this

isn’t easy, it ’s the hard part where all the dragons are

▪ Hard to replace callback groups with exist ing concepts in the

event libraries, e .g. strands in libasio are similar but insufficient

Why not <e ve nt libra ry>?

source: https:/ / roscon.ros.org/ 20 14 / wp-content/ uploads/ 20 14 / 0 7/ ROSCON-20 14 -Why-you-want-to-use-ROS-

2 .pdf

20 14

https://roscon.ros.org/2014/wp-content/uploads/2014/07/ROSCON-2014-Why-you-want-to-use-ROS-2.pdf
https://roscon.ros.org/2014/wp-content/uploads/2014/07/ROSCON-2014-Why-you-want-to-use-ROS-2.pdf

De c iding wha t t o Exe cut e

▪ Existing executors have existing

scheduling algorithms

▪ You might want your own,

executor is intended to be

extended (work in progress)

▪ Custom executors allow for

different scheduling and things

like batching

source: ht tps:/ / docs.ros.org/ en/ rolling/ Concepts/ Intermediate/ About-Executors.html# scheduling-

semantics

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html#scheduling-semantics
https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Executors.html#scheduling-semantics

Exe cut ion

1. Once the ent ity is ready, and the

executor is not busy…

2. Take any data associated with

the ent ity for the callback

3. Execute the user-defined

callback, passing the taken data

Type s of Exe cutors (cpp)

Wait

Mechanism
Execution Timers

SingleThreadedExecutor WaitSet Single Thread in wait loop

MultiThreadedExecutor WaitSet Multi-Threaded in wait loop

EventsExecutor callbacks Single Thread threaded TimerManager

Eve nt s Exe cutor

source: https:/ / discourse.ros.org/ t / the-ros-2-c-executors/ 38296

credit : Alberto Soragna (@alsora) pseudo-random system with ~40 publishers and

~70 subscriptions spread across 8 executors

“
~J une 20 22

https://discourse.ros.org/t/the-ros-2-c-executors/38296

Re ce nt Improve me nt s

▪ Unified SingleThreadedExecutor and

StaticSingleThreadedExecutors

▪ Implemented rclcpp::WaitSet

▪ Improved performance of “Ent ity Collect ion” with double buffering

Picking a n Exe cutor

▪ Consider your workload… do you prioritize:

□ Low Latency

□ High Throughput

□ Determinist ic Execut ion

▪ No “silver bullet”

▪ EventsExecutor for responsive and performant opt ion

▪ Mult iThreadedExecutor to ut ilize mult i-core systems

▪ Use mult iple executors if needed

Impa c t of Ca llba ck Groups

▪ MutuallyExclusiveCallbackGroup ’s cause a lot of work in entity

collection when used with the multi -threaded executors

□ Avoid this by using a ReentrantCallbackGroup if appropriate or

mult iple callback groups if not

▪ The default Callback Group (if you don’t specify one) is a single

MutuallyExclusiveCallbackGroup in order to keep with ROS 1’s

behavior and for a safe default

Alte rna t ive : Use Wa itSe t

▪ The introduction of rclcpp::WaitSet grew out of a request to not use

Executors at all and handle wait ing and execut ion ent irely within user

code.

▪ See examples:

https:/ / github.com/ ros2 / examples/ blob/ rolling/ rclcpp/ topics/ minimal_subscriber/ stat ic_wait_set_subscriber.cpp

https://github.com/ros2/examples/blob/rolling/rclcpp/topics/minimal_subscriber/static_wait_set_subscriber.cpp

Tha nks !

J a nosch Ma chowinski

@jmachowinski on GitHub

@ Cellumation GmbH

Has a talk right after this one!

Alberto Soragna

@alsora on GitHub

@ iRobot

Special thanks to…

and…

	Executors in ROS 2
	Outline
	What are “Entities”
	Executor Responsibilities
	What does an Executor do
	More about Waitables
	Callback Groups
	Collecting Entities to Wait
	Waiting
	Why not <event library>?
	Why not <event library>?
	Deciding what to Execute
	Execution
	Types of Executors (cpp)
	Events Executor
	Recent Improvements
	Picking an Executor
	Impact of Callback Groups
	Alternative: Use WaitSet
	Thanks!

