y

Accelerating the
Cl/CD-to-Robot Cycle
by 10x for 1/10th the cost

g

Ruffin White
Marcus Scheunemann

ROSCon 2024 | Odense, Denmark DEXORY

About Me & https://about.me/ruffin

Ruffin White Ph.D.

https://about.me/ruffin
https://about.me/ruffin
https://about.me/ruffin
https://www.python.org/
https://www.debian.org/
https://www.ros.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://isocpp.org/

Motivation X Cl/CD-to-Robot Cycle

Speedup software deployment
Time is money
= é)
Scaleup integration validation
More features, more variants

Streamline robot testing
Simulation-only doomed to succeed
el

Simplify Developer Experience
Poor DevEx impacts morale
&g e

Optimize CI/CD costs
Budgets are finite

m T

Motivation X Cl/CD-to-Robot Cycle

Speedup software deployment
Reduce time from pushed PR to ROS run
Deduplicate work via distributed caches
Scaleup integration validation
Expanding platform functionality
Without compromising test coverage
Streamline robot testing
Automate real and sim tests via PRs
Enable hybrid tests w/ hardware + sim
Simplify Developer Experience
Discrepancies between Dev and Prod
adds friction to reviewing & debugging
Optimize CI/CD costs
GitHub hosted GPU runners - $$$
AWS egress bandwidth - also $$$

. ‘VI“IDNIl||,
Y
‘ o
it

Related Work =

. - . . Opeﬁg
Prior art utilizes multi-staging to (robotics

1

or forgoes debian entirely for more .==E.
@ Jdocker

rigorous build environments & OS.
@ Great introduction to

Can cache granularity be improved intermediate patterns

to extend its distributed lifecycle? Predates modern

o BuildKit advancements
Can cache determinism be better

without retraining and retooling? Hermetic Robot Deployment

Using Multi-Stage Dockers
ROSCon ‘18 | Madrid, Spain

open.“
ﬂr:?botics |

1+ NixOS

¢ Purely deterministic
and cacheable builds

Radical departure
from Tier-1 support

Better ROS Builds with Nix
ROSCon ‘22 | Kyoto, Japan

https://vimeo.com/767139940
https://vimeo.com/293626218

Related Work =

Previous approaches demonstrate

ways to optimize workspace builds
using incremental compilation while
unifying CI with local development.

Can CI/CD speed be scaled further
while minimizing overhead costs?

Can dev workflows be simplified
despite infrastructure complexities?

Ruffi
Containerising Cl for Nav2 White

Chronicles of Caching and By

By: Ruffin White,
Gianluca Caiazza

Repeatable Reproducible Accessible
ROS Development via Dev Containers

Dcircleci 3 vscode

5 Optimize ClI pipeline
for speed and caching

¢ Non-optimal cost for
large scale deployment
Chronicles of Caching and

Containerising CI for Nav2
ROS World ‘21 | Earth, Sol

% Demos containers
as dev environments

e Omits infrastructure
to build/ship containers

Repeatable Reproducible
Accessible ROS Development
via Dev Containers

ROSCon ‘23 | New Orleans, USA

https://vimeo.com/879001614
https://vimeo.com/649647161/5b0c278e6c

Approach | BuildKit <¥

Granular. More caching options with Dockerfile directives
such as 'COPY --link” and 'RUN --mount’ features

Parallelized. Independent stages build simultaneously,
using Low-Level Build (LLB) to optimize shared layers

Distributed. Multiple caches backend supported: local
directory, remote registry, s3 bucket, GitHub cache, ...

Procedural. Code up bake files to string together Docker
contexts, build args, tag settings, etc, using HCL syntax

o

Oooo §9’=085_:.%é%;°8 '
o °3‘°3—o%_°

O

Approach | RunsOn #

rtups to large enterprises. Millions of runners have been run w

== cetonis |

Tl voe W © WS veniv il vsuse W

7 Faster. Raw CPU performance is up 30%
compared to GitHub hosted runners.

¢§ Cheaper. Between 7x to 15x cheaper than
GitHub hosted runners via spot instance pricing.

%1 Scalable. Handles bursts of multiple hundred

jobs at once without issue. No concurrency limit.

74 Compatible. With native GitHub workflows
via public default AMIs, or customize your own.

Low maintenance. A single CloudFormation
template with all the resources, 1-click install,
1-click upgrades. Costs $1.5/month.

runs-on.com

Demo license

Shockingly
self-hosted runners 10min

Up to 90% cheaper GitHub Actions runners.

800K+

Free

10x

Faster builds. Fully self-hosted in your AWS account.

Non-commercial license

For personal use, and non-profit organizations. Email

support.

Free Get license

Commercial license

For clever companies that want to reduce their Cl bill. o o

Monthly license fee is usually recouped within DAYS

of usage. Email support. °

300€/year (25€/month) Buy license

@ sponsorship license

Commercial license with dedicated support, sponsor

badge on homepage and access to the Server and

Agent source code.

1500€/year (125€/month)

https://runs-on.com

FROM baser AS cacher

copy overlay source
COPY ./src ./src

Implementation | BuildKit <¥

generate typed dependency lists
e Stagger dependency installation SHELL ["/bin/bash", "-o", "pipefail", "-c"]

o . . RUN dep types=(\
o Optimizes image size and layer reuse

"exec:--dependency-types=exec" \
o Run-time < Test-time < Build-time "test:--dependency-types=test" \

. . llb 'ld:n
e Lazy evaluation of build contexts -) &&“t \
o Why do now, what you can do later? for dep type in "${dep types[@]}"; do \
o Delay volatile branch inputs for last IFs=":"; set -- S$dep_type; \
rosdep install -y \
--from-paths src \
--ignore-src \

e Cache disk and network 10

. --reinstall \
o Using typed cache mounts . cimulate \
o E.g apt downloads for later rebuilds ${2} \
e Export cache mode=max | grep 'apt-get install' \
. . k _Fl 1 1 4 t 4 1 d " 1 "
o To preserve intermediate stages/work | aw {print $4}' | sed "s/'//g" \

| sort > /tmp/${1} debs.txt; \

o No need to inline them in final image done

COPY --link --from=cacher /tmp/exec debs.txt /tmp/exec debs.txt
RUN --mount=type=cache,sharing=locked, target=/var/cache/apt \
< /tmp/exec_debs.txt xargs apt-get install -y --no-install-recommends

Implementation | BuildKit ¢ Dockerfile Graph

Each stage builds FROM only what it needs,
. . ’ . COPY --1link --from=cacher /tmp/<exec/test/build>.txt ...
yet WI” COPY ——from What It needn t rebulld. [RUN -;mount=type=cache,§haring=locked,target=/‘.rar/cache/apt \]
< /tmp/<exec/test/build>.txt xargs apt-get install ...

Cl may restore partial builds for incremental compilation
by seeding caches that are key'd to builder's image hash RON dep_typas=(\

rosdep install -y \

| sort > /tmp/${1}_debs.txt

ﬂ
ubuntu /y[cacher = —_
x['" baser']—D[runner tester builder)G dever

\[O seeder]— e — — —\— — — — |::l compiler-]\

= validator

<
FROM - releaser —_— ////

COPY --from = ——— P> N~ — _—

Implementation | RunsOn

Config file/redirect is committed into repo
Defines available images and runners

Images (or AMIs) could be public or private
Example Packer template for Nvidia enabled AMI

.github/runs-on.yml

images:
cpu image :

) platform: "linux"
11| arch: "x64"
owner: "012345678901"

Default AMI with GitHub Action runner installed
name: "runs-on-dev-cpu-full-x64-*"
Login with AWS ECR for container on startup
preinstall : &preinstall script |

#!/bin/bash

o %%
su - runner -c "\ e

aws ecr get-login-password --region eu-west-2 \
| docker login --username AWS --password-stdin \
012345678901 .dkr.ecr.eu-west-2.amazonaws.com"

gpu image :
platform: "linux"
arch: "x64" @D!

. . owner: "012345678901"
o ithub.com/runs-on/runner-images-for-aws/pull/5 § Custom AMT with Nvidia drivers and container
runtime
Runners (or instances) can be specified by: name: "runs-on-dev-gpu-full-x64-"
preinstall : *preinstall script
o CPU architecture

vCPU count
RAM/HDD size
Spot pricing pref
SSH debug enable

o O O O

Preinstall enables ECR login,
prior to container job startup,
enabling use of private images,
equivalent to GCR via GitHub

gd4dn.4xlarge
gpu_image

U runner :
ﬁ # Specify GPU instance for ations
family: [" "] (

image :

L1111 eap

] ﬁ# For workflows that don’t require much of CPU /
RAM.
| } TTTTT

ram: [2, 4,
Burstable 1notances vg(rmboth x64 and armé64

family: ["t3", "td4"]

image: otheriimage
{:;assh: false
HashiCorp st:
cpu: 32
Pacl(er # Increase disk size to M a
hdd: 80 AMD
family: ["c7a", "m7a"]

spot: false

image: Qimage 11
admins :

- ruffsl

https://github.com/runs-on/runner-images-for-aws/pull/5

Implementation $<

Sequence Diagram
o Resource interaction for each job

Flow Diagram
o DAG of jobs for integration workflow

Triggered via schedule 2 weeks ago Status Total duration Artifacts

@ scheunemann -o-2a76429 main Success 18m 37s 9

build_test.yaml

on: schedule

4

@ Inte.../ Build Base Images 4m 4s ® ® @ In../ ../ Check Submodules 495 ®

(=

® @ L. /../Build Workspace 1m 17s ®

Checkout:

AWS

SK@

Integration, Feature Build & Push

Base Images

Pull Builder, Tester

Restore: Buildkit Cache
Save: Buildkit Cache
le—_pave:cuidiCache. 1

Push: Builder, Tester

Saye: Checkout Build & Push
ase Images

Pull: Builder

Restore: Checkout, Workspace

RunsOn

i

Colcon Build

(] e

Save: Workspace

Pul: Tester

Colcon Build
Workspace

Coloon Test

Workspace

Restore: Checkout, Workspace =

Save: Workspace

Coloon Test

Pull: Builder, Debugger, Releaser

Workspace

Build & Push

Prod Images

Restore: Checkout, Workspace

Push: Debugger, Releaser

Build & Push

GitHub ECR

(Y=

® @ Int../../Test Workspace 1m8s ®

[& &

® @ In../../Build Workspace 2m 4s ®

4

® @ Inte... /.../Build Images 2m 195 ®

Prod Images

[0 2 & <X

® @ In../../Test Workspace 3m 39s

N~

e O Integration /... / Push Release

12

Conclusion F=

Container Images e
(@) Feature Differential B Gose Coverage
Cache V|§ sulldKlt .
m Building w/ cache mounts | e T e e
m Deterministic multistages | L g o oeme iy ;
m Cache storage backends

o Unify via BakeFiles
m Robot Development
m Clfor Testing

m CD for Production Build Time
Container Runtimes m
o Save via self hosting 00| s==Ew o
01 .
m Co-locate Cache & Compute . /\(\o Test Time
o Simplify via RunsOn \J /\<\o
m Maintain GitHub Integration <Y

o Optimize Resources
m Provision per requirements

Future work @

& O Codespaces S

e Codespaces, but $elf Hosted with GPUs

Simplify onboarding and remote collaborations
Simulate scenarios too demanding for dev laptops
Improve cache locality/bandwidth via AWS region o
Forward graphics via NICE DCV or Moon/Sunlight

ccccc

(@]

o O O

e Combining containers with Nix packaging
o Improve build determinism and cacheabilty
Minimize diffs via per package COPY --link
Lower learning curve for dev adoption
Reusing existing deployment infrastructure

Docker and Nix (DockerCon 2023)

O O O O

e Optimizing ephemeral RunsOn runners
o Recycling EC2 instances for similar workflows
o github.com/runs-on/runs-on/discussions/72
o Reduce pull times via AMI/EBS docker tricks
O

github.com/awslabs/amazon-eks-ami/issues/1273

SIER!

rra rra rra

L1l
TTTTI
L1l
TTTTI
L1l
o
TTTTI

14

https://www.youtube.com/watch?v=l17oRkhgqHE
https://github.com/runs-on/runs-on/discussions/72
https://github.com/awslabs/amazon-eks-ami/issues/1273

References @

RunsOn
o runs-on.com [| I
o github.com/runs-on/runs-on
o github.com/runs-on/cache

1 |I|_Il

BuildKit
o qithub.com/moby/buildkit

"

Open Source example

o w7z Refactor Docker and Dev Container setup using Buildkit % [] Pl n .
m github.com/ros-navigation/navigation2/pull/4392 r

o docs.docker.com/build/buildkit 1 m
o docs.docker.com/build/bake m
o =z Concurrent requests may skip loading some cache paths ##

m github.com/moby/buildkit/issues/4674

15

https://runs-on.com/
https://github.com/runs-on/runs-on
https://github.com/runs-on/cache
https://github.com/moby/buildkit
https://docs.docker.com/build/buildkit/
https://docs.docker.com/build/bake
https://github.com/moby/buildkit/issues/4674
https://github.com/ros-navigation/navigation2/pull/4392

Adox3a

IoNs?

Quest

