
Accelerating the
CI/CD-to-Robot Cycle

by 10x for 1/10th the cost
Ruffin White

Marcus Scheunemann

ROSCon 2024 | Odense, Denmark

About Me https://about.me/ruffin

2

Ruffin White Ph.D.
 @ruffsl

https://about.me/ruffin
https://about.me/ruffin
https://about.me/ruffin
https://www.python.org/
https://www.debian.org/
https://www.ros.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://isocpp.org/

Motivation 🔭
●

Speedup software deployment
○ Time is money
⏱ = 💸

● Scaleup integration validation
○ More features, more variants
○ ⛴🛳🚢

● Streamline robot testing
○ Simulation-only doomed to succeed
○ 🖥 ≠ 🤖

● Simplify Developer Experience
○ Poor DevEx impacts morale
○ 🔥🧯😓

● Optimize CI/CD costs
○ Budgets are finite
○ 🏦🛫⏳

3

CI/CD-to-Robot Cycle

Motivation 🔭
●

Speedup software deployment
○ Reduce time from pushed PR to ROS run

Deduplicate work via distributed caches
● Scaleup integration validation

○ Expanding platform functionality
○ Without compromising test coverage

● Streamline robot testing
○ Automate real and sim tests via PRs
○ Enable hybrid tests w/ hardware + sim

● Simplify Developer Experience
○ Discrepancies between Dev and Prod
○ adds friction to reviewing & debugging

● Optimize CI/CD costs
○ GitHub hosted GPU runners - $$$
○ AWS egress bandwidth - also $$$

4

CI/CD-to-Robot Cycle

Related Work 📚
Prior art utilizes multi-staging to
prevent churn when re-deploying,
or forgoes debian entirely for more
rigorous build environments & OS.

Can cache granularity be improved
to extend its distributed lifecycle?

Can cache determinism be better
without retraining and retooling?

5

🎓 Great introduction to
intermediate patterns

📟 Predates modern
BuildKit advancements

Hermetic Robot Deployment
Using Multi-Stage Dockers
ROSCon ‘18 | Madrid, Spain

♻ Purely deterministic
and cacheable builds

🚧 Radical departure
from Tier-1 support

Better ROS Builds with Nix
ROSCon ‘22 | Kyoto, Japan

https://vimeo.com/767139940
https://vimeo.com/293626218

⚒ Demos containers
as dev environments

🚢 Omits infrastructure
to build/ship containers

Repeatable Reproducible
Accessible ROS Development
via Dev Containers
ROSCon ‘23 | New Orleans, USA

 VSCode
⏱ Optimize CI pipeline
for speed and caching

💰 Non-optimal cost for
large scale deployment

Chronicles of Caching and
Containerising CI for Nav2
ROS World ‘21 | Earth, Sol

Related Work 📚

6

Previous approaches demonstrate
ways to optimize workspace builds
using incremental compilation while
unifying CI with local development.

Can CI/CD speed be scaled further
while minimizing overhead costs?

Can dev workflows be simplified
despite infrastructure complexities?

https://vimeo.com/879001614
https://vimeo.com/649647161/5b0c278e6c

Approach | BuildKit 🐳
Granular. More caching options with Dockerfile directives
such as `COPY --link` and `RUN --mount` features

Parallelized. Independent stages build simultaneously,
using Low-Level Build LLB) to optimize shared layers

Distributed. Multiple caches backend supported: local
directory, remote registry, s3 bucket, GitHub cache, …

Procedural. Code up bake files to string together Docker
contexts, build args, tag settings, etc, using HCL syntax

7

⏱ Faster. Raw CPU performance is up 30%
compared to GitHub hosted runners.

💰 Cheaper. Between 7x to 15x cheaper than
GitHub hosted runners via spot instance pricing.

🏗 Scalable. Handles bursts of multiple hundred
jobs at once without issue. No concurrency limit.

✅ Compatible. With native GitHub workflows
via public default AMIs, or customize your own.

Low maintenance. A single CloudFormation
template with all the resources, 1-click install,
1-click upgrades. Costs $1.5/month.

8

Approach | RunsOn 🚀

runs-on.com

https://runs-on.com

Implementation | BuildKit 🐳
● Stagger dependency installation

○ Optimizes image size and layer reuse
○ Run-time < Test-time < Build-time

● Lazy evaluation of build contexts
○ Why do now, what you can do later?
○ Delay volatile branch inputs for last

● Cache disk and network IO
○ Using typed cache mounts
○ E.g apt downloads for later rebuilds

● Export cache mode=max
○ To preserve intermediate stages/work
○ No need to inline them in final image

9

FROM baser AS cacher

copy overlay source
COPY ./src ./src

generate typed dependency lists
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
RUN dep_types=(\
 "exec:--dependency-types=exec" \
 "test:--dependency-types=test" \
 "build:"\
) && \
 for dep_type in "${dep_types[@]}"; do \
 IFS=":"; set -- $dep_type; \
 rosdep install -y \
 --from-paths src \
 --ignore-src \
 --reinstall \
 --simulate \
 ${2} \
 | grep 'apt-get install' \
 | awk -F' ' '{print $4}' | sed "s/'//g" \
 | sort > /tmp/${1}_debs.txt; \
 done

COPY --link --from=cacher /tmp/exec_debs.txt /tmp/exec_debs.txt
RUN --mount=type=cache,sharing=locked,target=/var/cache/apt \
 < /tmp/exec_debs.txt xargs apt-get install -y --no-install-recommends

Each stage builds FROM only what it needs,
yet will COPY --from what it neednʼt rebuild.

CI may restore partial builds for incremental compilation
by seeding caches that are keyʼd to builderʼs image hash

FROM

COPY --from

Implementation | BuildKit 🐳

RUN dep_types=(\
 ...
 rosdep install -y \
 ...
 | sort > /tmp/${1}_debs.txt

COPY --link --from=cacher /tmp/<exec/test/build>.txt ...
RUN --mount=type=cache,sharing=locked,target=/var/cache/apt \
 < /tmp/<exec/test/build>.txt xargs apt-get install ...

Dockerfile Graph

runner tester builder

cacher

dever

releaser
validator

compilerseeder

baser

ubuntu

Implementation | RunsOn 🚀
● Config file/redirect is committed into repo
● Defines available images and runners
● Images (or AMIs) could be public or private
● Example Packer template for Nvidia enabled AMI

○ github.com/runs-on/runner-images-for-aws/pull/5
● Runners (or instances) can be specified by:

○ CPU architecture
○ vCPU count
○ RAM/HDD size
○ Spot pricing pref
○ SSH debug enable

● Preinstall enables ECR login,
prior to container job startup,
enabling use of private images,
equivalent to GCR via GitHub 11

.github/runs-on.yml
images:
 cpu_image :
 platform : "linux"
 arch: "x64"
 owner: "012345678901"
 # Default AMI with GitHub Action runner installed
 name: "runs-on-dev-cpu-full-x64-*"
 # Login with AWS ECR for container on startup
 preinstall : &preinstall_script |
 #!/bin/bash
 set -e
 su - runner -c "\
 aws ecr get-login-password --region eu-west-2 \
 | docker login --username AWS --password-stdin \
 012345678901.dkr.ecr.eu-west-2.amazonaws.com"
 gpu_image :
 platform : "linux"
 arch: "x64"
 owner: "012345678901"
 # Custom AMI with Nvidia drivers and container
runtime
 name: "runs-on-dev-gpu-full-x64-*"
 preinstall : *preinstall_script

runners:
 gpu_runner :
 # Specify GPU instance for simulations
 family: ["g4dn.4xlarge"]
 image: gpu_image

 cheap:
 # For workflows that don’t require much of CPU /
RAM.
 ram: [2, 4, 8]
 # Burstable instances, valid for both x64 and arm64
 family: ["t3", "t4"]
 image: other_image
 ssh: false
 fast:
 cpu: 32
 # Increase disk size to 80GB
 hdd: 80
 family: ["c7a", "m7a"]
 spot: false
 image: cpu_image

admins:
 - ruffsl

https://github.com/runs-on/runner-images-for-aws/pull/5

Implementation 🛠
● Sequence Diagram

○ Resource interaction for each job

● Flow Diagram
○ DAG of jobs for integration workflow

12

Conclusion 🏁
● Container Images

○ Cache via BuildKit
■ Building w/ cache mounts
■ Deterministic multistages
■ Cache storage backends

○ Unify via BakeFiles
■ Robot Development
■ CI for Testing
■ CD for Production

● Container Runtimes
○ Save via self hosting

■ Co-locate Cache & Compute
○ Simplify via RunsOn

■ Maintain GitHub Integration
○ Optimize Resources

■ Provision per requirements

13

Build Time

Test Time

Run
Time

Stick around,
got another
job for you!

Future work 🔮
● Codespaces, but $elf Hosted with GPUs

○ Simplify onboarding and remote collaborations
○ Simulate scenarios too demanding for dev laptops
○ Improve cache locality/bandwidth via AWS region
○ Forward graphics via NICE DCV or Moon/Sunlight

● Combining containers with Nix packaging
○ Improve build determinism and cacheabilty
○ Minimize diffs via per package COPY --link
○ Lower learning curve for dev adoption
○ Reusing existing deployment infrastructure
○ Docker and Nix DockerCon 2023

● Optimizing ephemeral RunsOn runners
○ Recycling EC2 instances for similar workflows
○ github.com/runs-on/runs-on/discussions/72
○ Reduce pull times via AMI/EBS docker tricks
○ github.com/awslabs/amazon-eks-ami/issues/1273

14

+ ?

♻🌡🔥

https://www.youtube.com/watch?v=l17oRkhgqHE
https://github.com/runs-on/runs-on/discussions/72
https://github.com/awslabs/amazon-eks-ami/issues/1273

References 🧭
● RunsOn

○ runs-on.com
○ github.com/runs-on/runs-on
○ github.com/runs-on/cache

● BuildKit
○ github.com/moby/buildkit
○ docs.docker.com/build/buildkit
○ docs.docker.com/build/bake
○ 🚧 Concurrent requests may skip loading some cache paths 🚧

■ github.com/moby/buildkit/issues/4674

● Open Source example
○ 🚧 Refactor Docker and Dev Container setup using Buildkit 🚧

■ github.com/ros-navigation/navigation2/pull/4392

15

https://runs-on.com/
https://github.com/runs-on/runs-on
https://github.com/runs-on/cache
https://github.com/moby/buildkit
https://docs.docker.com/build/buildkit/
https://docs.docker.com/build/bake
https://github.com/moby/buildkit/issues/4674
https://github.com/ros-navigation/navigation2/pull/4392

Questions?

16

