
Accelerating Robotics Development
with Embedded Linux

Rob Woolley, Wind River

Who am I?

● 25 years experience with Linux and embedded
● Started using ROS in 2018
● Actively participating in a number of

communities including OpenEmbedded (OE)
and the Yocto Project (YP)

● Maintainer of the meta-ros since Nov 2022
○ A series of OpenEmbedded layers designed to add support for the Robot

Operating System (ROS) for embedded Linux releases by the Yocto Project

2

Challenges for Robotics Development

● Setting up the development environment
● Getting support for a variety of embedded hardware
● Synchronizing custom changes with team mates and community
● Releasing product-quality software and supporting it over the long term
● Finding ready to use packages and filesystem images
● Enabling new developers to get started quickly and easily

3

Deploy

Launch TB3 ROS nodes
on RPi. TB3 is
operational.

Case Study: TurtleBot3 Quick Start Guide

4

Setup Remote PC

1. Install supported
Ubuntu (or VM)

2. Install ROS packages
3. Add TurtleBot3 (TB3)

packages

Setup
Raspberry Pi

1. Write Raspbian to SD card
2. Attach keyboard and HDMI
3. Setup device configuration

(hostname, WiFi SSID, etc.)
4. Download source code for

TB3 applications
5. Build TB3 packages on RPi

Networking

Configure remote PC and
TB3 to communicate with
each other

Run

Launch roscore and TB3
ROS applications on
remote PC

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/

What has changed?

● New graduates do not typically have experience with embedded software
● Legacy tools are typically difficult to use, unfamiliar, and often insecure
● Building the Linux and ROS software stack is massive

○ compute time, filesystem size, and number of independent projects
● ROS is maturing and being used more and more in production systems
● New requirements for edge computing (eg. physical security, remote updates)
● COTS hardware with custom peripherals (sensors, actuators, accelerators)
● Convergence of software domains (eg. AI/ML, Analytics, IT, OT, Security, UX)

5

Ideal Quick Start for Beginners

6

1

Setup

Clone the git repository for a
getting started tutorial. The

workspace includes a
DevContainer and Extension

Code

Developer makes some custom
changes to the sample

application.

2

Build

The DevContainer includes an
SDK with the development tools

and ROS environment. Developer
runs the build to compile the app.

3

Deploy

A launch configuration is provided
to allow the developer to test their
application in a QEMU simulated

environment with GDB

4

Why use ROS with OpenEmbedded?

● Support for robotics hardware developer kits
● Source-based build system (bitbake)
● Designed for preserving custom changes and configuration (“build to order”)
● Support for cross-platform builds (supporting building at cloud-scale)
● Maintenance

○ Software Bill of Material (SBOM)
○ Reproducible builds
○ Long-term Support (LTS) releases
○ Commercial support (from semiconductor vendors and others)

7

Open Embedded Architecture Workflow

8

Supported Hardware (meta-ros)

9

AMD Kria KR260 Nvidia Jetson
(AGX Orin, AGX Xavier,

Orin Nano)

Raspberry Pi 4 / 5

Qualcomm RB3 Gen 2

Microchip PolarFire
SoC FPGA

AAEON UP Squared
Developer Board with

Intel Processor

Development Scenarios

10

Standalone Developer Cloud-based Builds

Self-hosted Build Farm Application Developer

1 2

3 4

Standalone Developer

Yocto Quick Start (https://docs.yoctoproject.org/brief-yoctoprojectqs/)

● 90 GB disk space, 8GB RAM
● Supported OS (Ubuntu, Fedora, CentOS, Debian, OpenSUSE)
● https://docs.yoctoproject.org/ref-manual/system-requirements.html#supported-linux-distributions

11

git clone git://git.yoctoproject.org/pokyClone the reference distro with git

cd poky; source oe-init-build-envInitialize the Build Environment

Build basic console-only image bitbake core-image-base

Boot the image in QEMU runqemu qemux86-64

https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
https://docs.yoctoproject.org/ref-manual/system-requirements.html#supported-linux-distributions

Using the kas tool

12

python3 -m venv venv && source venv/bin/activate && pip3 install kas

Install kas

git clone -b build https://github.com/ros/meta-ros

Clone meta-ros

KAS_WORK_DIR=<PROJECT_DIR>
kas checkout meta-ros/kas/oeros-kirkstone-humble-raspberrypi4-64.yml

Checkout

Choose a configuration
e.g. oeros-<YOCTO RELEASE>-<ROS RELEASE>-<BOARD>.yml

Deploying the filesystem

13

build/tmp-glibc/deploy/images/raspberrypi4-64/ros-image-core-humble-raspberrypi4-64.rootfs.wic.bz2

Retrieve the filesystem image

oe-run-native bmaptool-native bmaptool copy <build/tmp/deploy/images/machine/image.wic> </dev/sdX>

Writing the image
If using the Balena Etcher tool to write your SD Card, you may provide it with this file directly.

If using dd or bmaptool, you must first decompress the bzip2 file first.

Cloud-based Builds

4 key reasons to use the cloud:

1. Building Linux and ROS is resource intensive
2. Open source moves fast, use continuous iteration to stay up-to-date
3. Share artifacts to save time and lower the bar for all developers
4. Long-term support and maintenance

14

Cloud-based Builds

● Leverage GitLab CI with runners for compute resources
● Use CROPS containers for supported host environment
● Use kas to set up the build environment
● Publish logs and artifacts back to GitLab or AWS S3 bucket
● Registration of runners is currently manual; experimenting with

dynamically creating instances with runners on demand
● Caching of shared state cache and fetched git repositories in

cloud storage reduces build times
● Well suited for nightly builds networking is fast and free, store

only the artifacts you need and shut down compute instances

15

Self-hosted Build Farm

● Run the GitLab Container locally on your own hardware
● Benefits include up-front costs, privacy, and security
● Can use the same GitLab CI setup as in the cloud
● Using static runners, caching can now happen locally on

the runner itself
● Mirror git repositories locally to reduce Internet bandwidth

(or support air-gapped environment)

16

17

18

19

Application Developer

● Bitbake can produce SDKs that include the tools,
libraries, and headers needed to do development

● Supports development on the command-line as
well as IDE across supported Linux distros

● Community working group has fresh PRs to
support building with colcon and Python

● Using CROPS as a DevContainer supports a
quick development environment across Linux,
Windows, and MacOS

20

Current Status of meta-ros

☑ Support for all maintained Yocto Project and ROS releases

☑ Community support for robotics hardware development kit

☑ Automation for maintenance and CI/CD builds

☐ Merge fixes for SDK

☐ Complete integration of visualization tools (Gazebo and RViz)

☐ Stand-up public GitLab infrastructure

☐ Publish artifacts (image and SDK) for download

☐ Enhance superflore tool for SBOM / SPDX support

21

Next Steps

● To get started follow https://github.com/ros/meta-ros/blob/build/kas/README.md
● Help with ROS OpenEmbedded (meta-ros) may be found on the ROS Discourse

OpenEmbedded category (https://discourse.ros.org/c/openembedded/26) or OSRF Discord
#cwg-openembedded

● Issues and pull requests for meta-ros may be submitted on GitHub:
https://github.com/ros/meta-ros/

● Join us at the ROS OpenEmbedded Community Group
○ Bi-weekly meetings on Monday at 3pm UTC (5pm CEST / 11am EDT / 8am PDT)
○ Google Meet: https://meet.google.com/ncq-atrn-wyk
○ Minutes:

https://docs.google.com/document/d/1LqUjcu6vdlqVJO62SreCyjzddNDZhfO2n-7qYghY_cQ/edit?usp=sharing

22

https://github.com/ros/meta-ros/blob/build/kas/README.md
https://discourse.ros.org/c/openembedded/26
https://discord.com/channels/1077825543698927656/1202522247978557510
https://github.com/ros/meta-ros/
https://meet.google.com/ncq-atrn-wyk
https://docs.google.com/document/d/1LqUjcu6vdlqVJO62SreCyjzddNDZhfO2n-7qYghY_cQ/edit?usp=sharing

24

Backup

Supported Combinations

25

Yocto Release ROS1 Distros ROS 2 Distros

(Rolling) Noetic Humble (LTS) Iron Jazzy

May 2025 May 2027 Nov 2024 May 2029

Walnascar (Dev) (Future) May 2025 May 2027 Nov 2024 (Future)

Styhead (Apr 2025) May 2025 (April 2025) Nov 2024 (Apr 2025)

Scarthgap (LTS) Apr 2028 May 2025 May 2027 Nov 2024 Apr 2028

Nanbield Apr 2024 Apr 2024 Apr 2024 Apr 2024 Apr 2024

Mickledore Nov 2023 Nov 2023 Nov 2023 Nov 2023 Nov 2023

Langdale May 2023 May 2023 May 2023 May 2023 May 2023

Kirkstone (LTS) Apr 2026 May 2025 Apr 2026 Nov 2024 Apri 2026

Hardware Laptops, PCs, and servers* SBCs & embedded devices

Primary Distribution Method Binary images & packages Source-based build system

Delivery Ready / Out-of-the-box Custom / Built to order

Build environment Self-hosted build Cross-platform build

Support Long-Term Support (LTS), Reproducible Builds, Software Bill of
Material (SBOM) generation, Commercial Support

Community Centralized Community
Infrastructure

Decentralized Community with
Vendors

Why choose embedded Linux?

26

* Debian derivatives like Armbian, Raspbian, and eLxr do provide support for select SBCs

meta-ros v2: OpenEmbedded Layers for ROS 1 & ROS 2

27

Credit: ROS on OpenEmbedded Simpler Robotics Development, LG Electronics USA, LG ROSCon 2019

rosdistro_build_cache

Distribution File Distribution Cache Generated Recipes

ROS Component Repos rosdep Mapping Files

<ROS-DISTRO>/distribution.yaml

package.xml

superflore

rosdep/*.yaml

<ROS-DISTRO>-cache.yaml generated-recipes-<ROS_DISTRO>/*/*.bb

Super Flore: An extended platform release manager for ROS

https://github.com/ros-infrastructure/superflore

INFO FOR MAINTAINERS

scripts/ros-generate-recipes.shscripts/ros-generate-cache.sh

https://github.com/ros-infrastructure/superflore

GitHub Actions: Generate Bitbake Recipes

28

Run the action manually by choosing a
Yocto release branch and a ROS Distro

Pulling the ROS packages.xml files from the
ROS GitHub repos is much faster (15 to 30 min)

1 2

INFO FOR MAINTAINERS

GitHub Actions (part 2)

29

A pull request is automatically created with details on recipes that changed.
From a security perspective, automating the process reduces the need for a in-depth code review.

3 4

INFO FOR MAINTAINERS

Pipeline Runs

The pipeline can be run with optional parameters to change the behaviour:

● GITLAB_REDIRECT
○ To redirect git back to locally-hosted repositories

● META_ROS_GIT
○ Set the URL to use for pulling meta-ros

● META_ROS_BRANCH
○ Set the branch to use for the build

● BITBAKE_TARGET
○ Set the target for bitbake to run

● BB_NUMBER_THREADS
○ Set the number of concurrent bitbake tasks to run

● PARALLEL_MAKE
○ Set the number of jobs for Make to use for building a recipe

What is “Embedded” in 2024?

31

● Devices are connected to the network and remotely accessible
● Physical and remote access introduces new challenges to security
● New requirements for edge computing (eg. physical security, remote updates)
● COTS hardware with custom peripherals (sensors, actuators, accelerators)
● Tuned performance and system engineering tradeoffs (soft RT and SWaP)
● Mixed-Criticality with a Safety-Certified Hypervisor and RTOS with Linux
● Convergence of software domains (eg. AI/ML, Analytics, IT, OT, Security, UX)

