
A Fuzzy-Matching Trajectory Cache for MoveIt 2
Brandon Ong
github.com/methylDragonSWE. Open Robotics @ Intrinsic

ROSCon 2024

some stuff I’ve done:
core ROS dev

REP-2011
cloud robotics

cool memes, and boardgames

The Problem

The Problem
In an industrial context:

“How can we get manipulator trajectories
quickly and deterministically?”

The Problem
In an industrial context:

“How can we get manipulator trajectories
quickly and deterministically?”

cycle-time → $$$

The Problem
In an industrial context:

“How can we get manipulator trajectories
quickly and deterministically?”

cycle-time → $$$ reliability,
repeatability,
safety

The Problem
In an industrial context:

“How can we get manipulator trajectories
quickly and deterministically?”

Currently to get this in MoveIt 2,
you would have to manually label and save pre-planned trajectories,

and then manually reuse them
Very labor intensive!

Context

For a given manipulator,
There exists multiple paths from start to goal

START

For a given manipulator,
There exists multiple paths from start to goal

START

GOAL

For a given manipulator,
There exists multiple paths from start to goal

WITH VARYING DEGREES OF OPTIMALITY

START

GOAL
“BEST”

And the two main planning strategies have
opposing pros and cons

Sampling-Based

Fast
Random

Rarely finds “more optimal” paths

Optimization-Based

Slow
Deterministic
Finds “more optimal” paths

A cache lets you reap all benefits
Sampling-Based

Fast
Random

Rarely finds “more optimal” paths

Optimization-Based

Slow
Deterministic
Finds “more optimal” paths

The Core Idea
If you’ve already cached a path from some start to goal, under some set of constraints

State Space

START

GOAL

The Core Idea
If you’ve already cached a path from some start to goal, under some set of constraints

If faced with a “close-enough” scenario, just reuse the cached path

State Space

START*

GOAL*

START

reused

Developing Idea
If you planned again, you might find a “better”, more optimal path

If the cache is aware of the metric, you could rank paths and use the best one

State Space

START*

GOAL*

START
reused

A cache lets you reap all benefits
Sampling-Based

Fast
Random

Rarely finds “more optimal” paths

Optimization-Based

Slow
Deterministic
Finds “more optimal” paths

A cache lets you reap all benefits
By skipping planning through plan reuse and ranking

Sampling-Based

Fast
Random

Rarely finds “more optimal” paths

Optimization-Based

Slow
Deterministic
Finds “more optimal” paths

A fuzzy-matching cache lets you reap all benefits
and

Allows you to automate matches of suitable trajectories
State Space

START*

GOAL*

START

reused

The Fuzzy-Matching Trajectory Cache
finally after 7 years, it arrives

Available now in MoveIt2!

Available now in MoveIt2! Pending refactor for extensibility

Available now in MoveIt2! Pending refactor for extensibility

With interactive demo!

Good News!
The cache is available RIGHT NOW

Better News!
It’s based on work done for https://github.com/osrf/nexus

Which means it’s been used with
real SCARA and 6-DoF manipulators

https://github.com/osrf/nexus

Incredible News!
Even in freespace planning, we’ve seen

We saw 5%-99% reduction in planning time in
production

Bananas News!
The cache works for motion plans and cartesian plans

And is usable with ANY planner and robot with
single-DoF joints

Quick “Demo”

The following are screenshots from the interactive tutorial demo

CACHE POPULATION WORKS

FETCHES TRAJECTORIES
MATCHING START AND GOAL

FETCHES TRAJECTORIES
MATCHING START AND GOAL

FINDS “BEST” TRAJECTORY

ALSO DOES PRUNING
(PRESERVING BEST)

ALSO DOES PRUNING
(PRESERVING BEST)

Over time the cache “learns”
the best trajectory!

ALSO DOES PRUNING
(PRESERVING BEST)

Over time the cache “learns”
the best trajectory!

THIS IS NOT DEEP LEARNING

SOME TIME LATER…

FETCH AND EXECUTE BEST
OK

CARTESIAN PLANS
OK

START

FUZZY MATCHING OK
CACHED

GOAL

CACHED
START

START

FUZZY MATCHING OK
CACHED

GOAL

CACHED
START

START

*tolerance set inadvisably high for demonstration

✨ DEMO DONE ✨

How It Works

If you’ve already cached a path from some start to goal, under some set of constraints
If faced with a “close-enough” scenario, just reuse the cached path

Recalling The Core Idea

State Space

START*

GOAL*

START

reused

Recalling The Core Idea
If you’ve already cached a path from some start to goal, under some set of constraints

If faced with a “close-enough” scenario, just reuse the cached path

State Space

START*

GOAL*

START

reusedThe key is intelligently encoding the scenario
In a way that can be fuzzily matched

(i.e., defining what “close-enough” means)

Encoding The Scenario

Encoding The Scenario
We key the cache on:
1. Workspace Features

○ Move group name
○ Planning frame ID
○ Workspace limits

2. Robot Starting State
○ In configuration space (i.e., the joint states)!

3. Goal Constraints
○ Fetched from plan request message
○ Considered:

■ Acceleration limits
■ Joint/pose goal
■ Etc.

And many more “features” of the scenario!

Encoding The Scenario
We key the cache on:
1. Workspace Features

○ Move group name
○ Planning frame ID
○ Workspace limits

2. Robot Starting State Features
○ In configuration space (i.e., the joint states)!

3. Goal Constraints
○ Fetched from plan request message
○ Considered:

■ Acceleration limits
■ Joint/pose goal
■ Etc.

And many more “features” of the scenario!

Encoding The Scenario
We key the cache on:
1. Workspace Features

○ Move group name
○ Planning frame ID
○ Workspace limits

2. Robot Starting State Features
○ In configuration space (i.e., the joint states)!

3. Goal Constraints Features
○ Fetched from plan request message
○ Considered:

■ Acceleration limits
■ Joint/pose goal
■ Etc.

And many more “features” of the scenario!

Encoding The Scenario
We key the cache on:
1. Workspace Features

○ Move group name
○ Planning frame ID
○ Workspace limits

2. Robot Starting State Features
○ In configuration space (i.e., the joint states)!

3. Goal Constraints Features
○ Fetched from plan request message
○ Considered:

■ Acceleration limits
■ Joint/pose goal
■ Etc.

And many more “features” of the scenario!

*all poses canonicalized
 to robot base frame

The cache is a
warehouse_ros database
All those features are inserted as
a giant list of warehouse_ros
metadata annotations

A cache entry is a valid match if it is:
1. Close enough
2. Cached under “greater-than-or-equally” strict

constraints than the lookup request

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries
Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries
● Exact lookups for…

○ Joint names
○ Frame names
○ Robot names
○ Etc.

● Less-Than-Or-Equal / Greater-Than-Or-Equal lookups for…
○ Acceleration Limits
○ Velocity Limits
○ Workspace Limits
○ Etc.

● Range lookups for…
○ Everything else

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries
● Exact lookups for…

○ Joint names
○ Frame names
○ Robot names
○ Etc.

● Less-Than-Or-Equal / Greater-Than-Or-Equal lookups for…
○ Acceleration Limits
○ Velocity Limits
○ Workspace Limits
○ Etc.

● Range lookups for…
○ Everything else

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries
● Exact lookups for…

○ Joint names
○ Frame names
○ Robot names
○ Etc.

● Less-Than-Or-Equal / Greater-Than-Or-Equal lookups for…
○ Acceleration Limits
○ Velocity Limits
○ Workspace Limits
○ Etc.

● Range lookups for…
○ Everything else

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries
● Exact lookups for…

○ Joint names
○ Frame names
○ Robot names
○ Etc.

● Less-Than-Or-Equal / Greater-Than-Or-Equal lookups for…
○ Acceleration Limits
○ Velocity Limits
○ Workspace Limits
○ Etc.

● Range lookups for…
○ Everything else

Fuzzily Fetching Plans

*match tolerance is independently
adjustable for start and end constraints!

All the way to 0+ϵ
(floating-point exact-match)

Using The Cache

Insert and Fetch
// Insert (and prune)
cache->insertTrajectory(
 move_group, robot_name, std::move(plan_req_msg), std::move(plan),
 /*cache_insert_policy=*/BestSeenExecutionTimePolicy(),
 /*prune_worse_trajectories=*/true,
 /*additional_features=*/{});

// Fetch
auto fetched_trajectory =
 cache->fetchBestMatchingTrajectory(
 move_group, robot_name, motion_plan_req_msg,
 /*features=*/TrajectoryCache::getDefaultFeatures(start_tolerance, goal_tolerance),
 /*sort_by=*/TrajectoryCache::getDefaultSortFeature(),
 /*ascending=*/true);

Insert and Fetch
// Insert (and prune)
cache->insertTrajectory(
 move_group, robot_name, std::move(plan_req_msg), std::move(plan),
 /*cache_insert_policy=*/BestSeenExecutionTimePolicy(),
 /*prune_worse_trajectories=*/true,
 /*additional_features=*/{});

// Fetch
auto fetched_trajectory =
 cache->fetchBestMatchingTrajectory(
 move_group, robot_name, motion_plan_req_msg,
 /*features=*/TrajectoryCache::getDefaultFeatures(start_tolerance, goal_tolerance),
 /*sort_by=*/TrajectoryCache::getDefaultSortFeature(),
 /*ascending=*/true);

Inject your own cache
feature extractors!

Insert and Fetch
// Insert (and prune)
cache->insertTrajectory(
 move_group, robot_name, std::move(plan_req_msg), std::move(plan),
 /*cache_insert_policy=*/BestSeenExecutionTimePolicy(),
 /*prune_worse_trajectories=*/true,
 /*additional_features=*/{});

// Fetch
auto fetched_trajectory =
 cache->fetchBestMatchingTrajectory(
 move_group, robot_name, motion_plan_req_msg,
 /*features=*/TrajectoryCache::getDefaultFeatures(start_tolerance, goal_tolerance),
 /*sort_by=*/TrajectoryCache::getDefaultSortFeature(),
 /*ascending=*/true);

Inject your own insert
and prune policy!

Extending The Cache
You can implement and pass in your own:
● Feature extractors

○ (for encoding the scenario and fetching)
● Cache insert policy

○ (for pruning and insertion logic)
○ (also associates with a set of pre-baked feature extractors)

Extending The Cache
You can implement and pass in your own:
● Feature extractors

○ (for encoding the scenario and fetching)
● Cache insert policy

○ (for pruning and insertion logic)
○ (also associates with a set of pre-baked feature extractors)

The default implementations support sorting and pruning by execution time.

Extending The Cache
You can implement and pass in your own:
● Feature extractors

○ (for encoding the scenario and fetching)
● Cache insert policy

○ (for pruning and insertion logic)
○ (also associates with a set of pre-baked feature extractors)

The default implementations support sorting and pruning by execution time.
The cache provides extension points for you to implement other functionality,
like sorting and pruning by path length/minimum jerk/etc. instead!

Abstracting The Cache
You can build on top of the cache!

Abstracting The Cache
You can build on top of the cache!

Here is a starter idea, cache modes:

Abstracting The Cache
You can build on top of the cache!

Here is a starter idea, cache modes:
● TrainingOverwrite: Always plan, always insert, always prune
● TrainingAppendOnly: Always plan, always insert, never prune
● ExecuteBestEffort: Always fetch, only plan if fetch failed, never insert
● ExecuteReadOnly: Always fetch, never plan

Abstracting The Cache
You can build on top of the cache!

Here is a starter idea, cache modes:
● TrainingOverwrite: Always plan, always insert, always prune
● TrainingAppendOnly: Always plan, always insert, never prune
● ExecuteBestEffort: Always fetch, only plan if fetch failed, never insert
● ExecuteReadOnly: Always fetch, never plan

You can see how such behaviors effectively model the "dev" and "deploy" phases
of a robot deployment, and how they could be useful.

Some Caveats

Caveats
Missing support for:
● Multi-DoF joints
● Constraint Regions

Contributions welcome for intelligent encoding strategies for those!

Caveats
The cache does not consider the planning scene

(caching the scene is difÏcult)
State Space

START*

GOAL*

START

reused

Caveats
The cache does not consider the planning scene

If your scene changes, a fetch could result in a collision
State Space

START*

GOAL*

START

reused

new obstacle

collision!

Dealing With
Collisions

Dealing With Collisions
Keep your scene static, or strictly less obstructed

State Space

START*

GOAL*

START

original scene

Dealing With Collisions
Keep your scene static, or strictly less obstructed

State Space

START*

GOAL*

START
new scene

(ok)

Dealing With Collisions
Or store and fetch multiple trajectories, and validate after fetch!

(The cache lets you prune up to K trajectories for a given query)

State Space

START*

GOAL*

START

unobstructed

CH3EERS!
question time.

Brandon Ong
github.com/methylDragonSWE. Open Robotics @ Intrinsic

Cache README

github.com/moveit/moveit2/tree/main/moveit_ros/trajectory_cache

Please cite the cache if you use it!

