ROSCon 2024

A Fuzzy-Matching
Trajectory Cache for
Movelt 2

github.com/methylDragon
SWE. Open Robotics @ Intrinsic

The Problem

The Problem

In an industrial context:

“How can we get manipulator trajectories
quickly and deterministically?”

The Problem

In an industrial context:

“How can we get manipulator trajectories
and deterministically?”

The Problem

In an industrial context:

“How can we get manipulator trajectories
slgleldeterministicallyfs

reliability,
repeatability,
safety

The Problem

In an industrial context:

“How can we get manipulator trajectories

slgleldeterministicallyfs

Currently to get this in Movelt 2,
you would have to [ERITETWAETTEIR-Tole KX 1\-N e =Rl o] 1o [s-Te Rig- 1[Flea del g =X,

Very labor intensive!

Context

For a given manipulator,

There exists multiple paths from S to Fler]

O

For a given manipulator,

There exists multiple paths from S to Fler]

GOAL

For a given manipulator,

There exists multiple paths from start to goal
WITH VARYING DEGREES OF OPTIMALITY

And the two main planning strategies have
opposing pros and cons

Sampling-Based

Fast Slow
Random Deterministic
Rarely finds “more optimal” paths Finds “more optimal” paths

A cache lets you reap all benefits

Deterministic

Finds “more optimal” paths

The Core Idea

If you've already cached a path from some start to goal, under some set of constraints

State Space

START

GOAL

The Core Idea

If you've already cached a path from some start to goal, under some set of constraints

State Space

START*

START

GOAL*

Developing Idea

If you planned again, you might find a “better”, more optimal path

State Space

START*

START

GOAL*

A cache lets you reap all benefits

Deterministic

Finds “more optimal” paths

A cache lets you reap all benefits
y ski lanning through plan reuse and ranking

etermlnlstlc

Finds “more optlmal paths

A \{TF#ABI 1 EY]l eTel cache lets you reap all benefits
and

Allows you to automate matches of suitable trajectories

/ State Space \

START*

START

GOAL*

Movelt: Is there a trajectory-cache?

/i\sn':ed['? years, 8 months ago] Modified 7 years, 8 months ago Viewed 21 times

The Fuzzy-Matching Trajectory Cache

finally after 7 years, it arrives

moveit/moveit2

#2838 Implement fuzzy-
matching Trajectory
Cache ¢}

C],) 17 comments @ 52 reviews 8files +3487-0mEEmEN

7% methylDragon « May 18,2024 -0 27 commits ()]

Available now in Movelt2!

methylDragon

Available now in Movelt2!

moveit/moveit2

#2941 Fuzzy-matching
Trajectory Cache
Injectable Traits refact...

Gl 6 comments (20 reviews [£) 33 files +7078-1658mmmm

o5

=

methylDragon -« July 31,2024 <O 51 commits

Implement fuzzy- Fuzzy-matching

matching Trajectory Trajectory Cache
Cache Injectable Traits refact...
Available now in Movelt2! Pending refactor for extensibility
#940 Add Trajectory %%2
Cache Example For "
Refactor

G0 comments (20 reviews [£) 23 files +2354-ommmmm

rn methylDragon « August 7,2024 ~C 7 commits O

With interactive demo!

Good News!

Better News!

It’'s based on work done for https://github.com/osrf/nexus

Which means it’s been used with

real SCARA and 6-DoF manipulators

https://github.com/osrf/nexus

Incredible News!

Even in freespace planning, we've seen

We saw 5%-99% reduction in planning time in

Quick “D
emo”’

Demo_ExecuteWithCache(3/4)

cached-motion-plans: 16
cached-cartesian-plans: 5
fetched-plan-planning-time: 0.023438
fetched-plan-fetch-time: 0.0101488

[[PARAMETERS]]
cache_db_host: :memory:
start_tolerance: 0.025

goal_tolerance: 0.001
delete_worse_trajectories:

[[LEGEND]]

TRANSLUCENT: planner_plans
GREY: all_cached_plans

WHITE: matchable_cached_ plans
YELLOW: matched_cached_plans
GREEN: best_cached_plan

RED: diff_to_trajectory

Ii

b/

.

N

.

P

Ry

CACHE POPULATION WORKS

FINDS “BEST” TRAJECTORY

e

ALSO DOES PRUNING

(PRESERVING BEST)

ALSO DOES PRUNING

(PRESERVING BEST)

Over time the cache “learns”

the best trajectory!

ALSO DOES PRUNING

(PRESERVING BEST)

Over time the cache “learns”
the best trajectory!

THIS IS NOT DEEP LEARNING

SOME TIME LATER...

FETCH AND EXECUTE BEST

OK

CARTESIAN PLANS

OK

RIADEMO DONER,

How It Works

Recalling The Core Idea

If you've already cached a path from some start to goal, under some set of constraints

[]

State Space

-

START*

START

GOAL*

Recalling The Core Idea

If you've already cached a path from some start to goal, under some set of constraints

[]

The key is intelligently encoding the scenario

In a way that can be fuzzily matched

(i.e., defining what “close-enough” means)

Encoding The Scenario

Encoding The Scenario
We key the cache on:

| \Workspace Features

o Move group name
o Planning frame ID
o Workspace limits

Encoding The Scenario
We key the cache on:

| \Workspace Features

o Move group name
o Planning frame ID
o Workspace limits

yAERobot Starting State Features

o In configuration space (i.e., the joint states)!

Encoding The Scenario
We key the cache on:

| \Workspace Features

o Move group name
o Planning frame ID
o Workspace limits

yAERobot Starting State Features

o In configuration space (i.e., the joint states)!

M Goal Constraints Features

o Fetched from plan request message
o Considered:

m Acceleration limits

m Joint/pose goal

m Etc.

And many more “features” of the scenario!

Encoding The Scenario
We key the cache on:

| \Workspace Features

o Move group name
o Planning frame ID
o Workspace limits

yAlRobot Starting State Features = T
o In configuration space (i.e., the joint states)! all poses canonicalized

N Goal Constraints Features

o Fetched from plan request message
o Considered:

m Acceleration limits

m Joint/pose goal

m Etc.

to robot base frame

And many more “features” of the scenario!

~ B T_move_group_trajectory_cache@panda_arm
Data
B M_id
B M_creation_time
M_GoalConstraintsFeatures.goal_constraints_0.0...
M_GoalConstraintsFeatures.goal_constraints_0.o...
B M_GoalConstraintsFeatures.goal_constraints_0.o...
M_GoalConstraintsFeatures.goal_constraints_0.0...
 M_GoalConstraintsFeatures.goal_constraints_0.o...
M_GoalConstraintsFeatures.goal_constraints_0.o0.
M_GoalConstraintsFeatures.goal_constraints_0.p...
. B M_GoalConstraintsFeatures.goal_constraints_0.p...
M_GoalConstraintsFeatures.goal_constraints_0.p...
T h e Ca C h e I S a M_GoalConstraintsFeatures.goal_constraints_0.p...
M_GoalConstraintsFeatures.goal_constraints_0.p...
M_MaxSpeedAndAccelerationFeatures.max_accel...
M_MaxSpeedAndAccelerationFeatures.max_veloc...
M_StartStateJointStateFeatures.start_state.joint,
M_StartStateJointStateFeatures.start_state.joint,
M_StartStateJointStateFeatures.start_state.joint,
B M_StartStateJointStateFeatures.start_state.joint_...
M_StartStateJointStateFeatures.start_state.joint,
M_StartStateJointStateFeatures.start_state.joint,
) M_StartStateJointStateFeatures.start_state.joint_
All t h ose fe atures are inserte d as R
M_StartStateJointStateFeatures.start_state.joint_...
M_StartStateJointStateFeatures.start_state.joint,
M_StartStateJointStateFeatures.start_state.joint,

a giant list of warehouse_ros

M_StartStateJointStateFeatures.start_state.joint_...

B M_StartStateJointStateFeatures.start_state.joint.

o M_StartStateJointStateFeatures.start_state.joint,

metadata annotations
M_StartStateJointStateFeatures.start_state.joint_...
M_StartStateJointStateFeatures.start_state.joint_...

B M_WorkspaceFeatures.group_name

M_WorkspaceFeatures.workspace_parameters.h...
M_WorkspaceFeatures.workspace_parameters.m...
B M_WorkspaceFeatures.workspace_parameters.m...
M_WorkspaceFeatures.workspace_parameters.m...

M_WorkspaceFeatures.workspace_parameters.m.

M_WorkspaceFeatures.workspace_parameters.m...

M_WorkspaceFeatures.workspace_parameters.m...
M_execution_time_s

B M_planning_time_s

Fuzzily Fetching Plans

A cache entry is a valid match if it is:

IRClose enough

yAlCached under “greater-than-or-equally” strict

constraints than the lookup request

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries

o [FE lookups for...

Joint names
Frame names
Robot names
Etc.

@)
@)
©)
@)

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries

o [FE lookups for...

Joint names
Frame names
Robot names
Etc.

LI ess-Than-Or-Equal / Greater-Than-Or-EqualjlelelX([e}}{e]s¥

o Acceleration Limits
o Velocity Limits

o Workspace Limits
o Etc.

@)
@)
©)
@)

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries

o [FE lookups for...

Joint names
Frame names
Robot names
Etc.

LI ess-Than-Or-Equal / Greater-Than-Or-EqualjlelelX([e}}{e]s¥

o Acceleration Limits
o Velocity Limits

o Workspace Limits
o Etc.

@)
@)
©)
@)

o [ENFLE lookups for...

o Everything else

Fuzzily Fetching Plans

A plan fetch is just a long list of warehouse_ros DB lookup queries

Using The Cache

Insert and Fetch

// Insert (and prune)

cache->insertirajectory(
move_group, robot_name, std::move(plan_req_msg), std::move(plan),
/*cache_insert_policy=*/BestSeenExecutionTimePolicy(),
/*prune_worse_trajectories=*/true,
/*additional_features=*/{});

// Fetch

auto fetched_trajectory =
cache->fetchBestMatchingTrajectory(
move_group, robot_name, motion_plan_req_msg,
/*features=*/TrajectoryCache: :getDefaultFeatures(start_tolerance, goal_tolerance),
/*sort_by=*/TrajectoryCache: :getDefaultSortFeature(),
/*ascending=*/true);

Insert and Fetch
// Insert (and prune)

cache->insertTrajectory(

move_group, robot_name, std::move(plan_req_msg), std::move(plan),
/*cache_insert_policy=*/BestSeenExecutionTimePolicy(),
/*prune_worse_trajectories=*/true,
/*additional_features=*/{})Eu

nject your own cache

feature extractors!
// Fetch

auto fetched_trajectory =
cache->fetchBestMatchingTrajectory(
move_group, robot_name, motion_plan_req_msg,

/*features=*/TrajectoryCache: :getDefaultFeatures(start_tolerance, goal_tolerance)

/*sort_by=*/TrajectoryCache: :getDefaultSortFeature(),
/*ascending=*/true);

Insert and Fetch

// Insert (and prune)

cache->insertTrajectory(
move_group, robot_name, std::move(plan_req_msg), std::move(plan),
/*cache_insert_policy=*/BestSeenExecutionTimePolicy(),
/*prune_worse_trajectories=*/true,
/*additional_features=*/{});

Inject your own insert

and prune policy!

// Fetch

auto fetched_trajectory =
cache->fetchBestMatchingTrajectory(
move_group, robot_name, motion_plan_req_msg,
/*features=*/TrajectoryCache: :getDefaultFeatures(start_tolerance, goal_tolerance),
/*sort_by=*/TrajectoryCache: :getDefaultSortFeature(),
/*ascending=*/true);

Extending The Cache

You can implement and pass in your own:

‘M Feature extractors

o (for encoding the scenario and fetching)

[ICache insert policy,
o (for pruning and insertion logic)
o (also associates with a set of pre-baked feature extractors)

Extending The Cache

You can implement and pass in your own:

‘MM Feature extractors

o (for encoding the scenario and fetching)

(I Cache insert policy
o (for pruning and insertion logic)
o (also associates with a set of pre-baked feature extractors)

The default implementations support sorting and pruning by execution time.

Extending The Cache

You can implement and pass in your own:

‘MM Feature extractors

o (for encoding the scenario and fetching)

(I Cache insert policy
o (for pruning and insertion logic)
o (also associates with a set of pre-baked feature extractors)

The default implementations support sorting and pruning by execution time.

The cache provides extension points for you to implement other functionalit
like sorting and pruning by path length/minimum jerk/etc. instead!

Abstracting The Cache

You can build on top of the cache!

Abstracting The Cache

You can build on top of the cache!

Here is a starter idea, cache modes:

Abstracting The Cache

You can build on top of the cache!

Here is a starter idea, cache modes:

o LB NE AT Always plan, always insert, always prune
o LiclallalelaVelel=l5lc[®]51)%: Always plan, always insert, never prune

o [CNLEIEISl1ai: Always fetch, only plan if fetch failed, never insert

o [DCEENELEER(0L1W: Always fetch, never plan

Abstracting The Cache

You can build on top of the cache!

Here is a starter idea, cache modes:

o LB NE AT Always plan, always insert, always prune
o LiclallalelaVelel=l5lc[®]51)%: Always plan, always insert, never prune

o [DCENEIER S (g Always fetch, only plan if fetch failed, never insert

o [DCEENELEER(0L1W: Always fetch, never plan

You can see how such behaviors effectively model the "dev" and "deploy" phases
of a robot deployment, and how they could be useful.

Some Caveats

Missing support for:
e Multi-DoF joints
e Constraint Regions

The cache does not consider the planning scene
(caching the scene is difficult)

/ State Space \

START*

START

GOAL*

The cache does not consider the planning scene

If your scene changes, a fetch could result in a collision

/ State Space \

START*

START collision!

- 4

new obstacle
GOAL*

Dealing With
Collisions

Dealing With Collisions

Keep your scene static, or strictly less obstructed

/ State Space \

START*

START

original scene

GOAL*

Dealing With Collisions

Keep your scene static, or strictly less obstructed

State Space

START*

START

new scene

(ok)

GOAL*

Dealing With Collisions

Or store and fetch multiple trajectories, and validate after fetch!

State Space

START*

START

Cache README

question time.

github.com/
moveit/moveit2/tree/main/moveit_ros/trajectory_cache

github.com/methylDragon
SWE. Open Robotics @ Intrinsic

