
Robotics Observability

Scaling ROS from Prototype to Production

Adrian Macneil

Co-founder & CEO

https://foxglove.dev

Robots have graduated from the lab

2000 2010 2020 2030

Does it operate effectively without
intervention?

Can it deliver repeatable success?

Can it operate reliably at scale?

The hardest part

about robotics?

Making it work

Production

Reliability at scale

Centralized logging

Robots as cattle

Prototype

Get it working once

SSH debugging

Robots as pets

Success in

production requires

a different approach

Your ability to determine the

internal state of a system

based on its observable outputs

What is

Observability?

Observability is understanding

how your robots sense, think, and act

Multimodal sensor data

Semantic state

Many devices

Distributed facilities

Limited bandwidth

Observing robots at scale is complex

Server observability
tools

Grafana, Datadog, etc

Support logs/metrics/traces

No multimodal data

No support for edge recording

Traditional robotics
dev tools

RViz, Rqt, etc

Support prototype development

No cloud-based workflows

Limited cross-platform support

The existing

tools weren’t

built for this

The four pillars of a

robotics observability stack

Record Upload Process Analyze

Lightweight telemetry

● Pose, GPS, joint states, system state, etc

● Typically uploaded in near-real time

● Often useful for business insights / analytics

Downsampled sensor data

● Lower resolution or reduced framerate (e.g. 1hz front camera)

● Helpful for incident triage

Full resolution sensor data

● Raw camera images, lidar frames, etc

● Often necessary for debugging

● Can generate upwards of 1TB per hour!

Categories of robotics data

Standardize log pipeline - avoid the “junk drawer” approach

● Don’t record launch parameters to a separate .yaml file

● Don’t stream logs to a .txt file - use /rosout and save in your bag

● Don’t log video to a separate .mp4 file

ROS 1 -> .bag

ROS 2 -> .mcap

Recording files should be self-contained

● Everything necessary to reproduce internal state of the robot

● Simplifies parallel post-processing

● Guaranteed future accessibility

● Record server communication

● Don’t forget latched topics!

Record

Upload

Process

Analyze

File splitting

● Split based on time or file size (1 - 5 mins)

● Consider separate files for groups of topics

● Allows delete or upload discrete files - avoid further processing on-device

Rolling record

● ROS node or cron job

● Delete old files based on available disk space

Compression

● Saves disk space, but uses additional cpu/memory

● Chunk compression (lossless)

● Avoid whole-file compression

Record

Upload

Process

Analyze

Record

Upload

Process

Analyze

Bandwidth is always a problem

● Warehouse robots often limited to 10 - 100 Mbps per site

● Agricultural robots are often lucky to have internet at all

● But some robots can record over 1 Gbps

Post-process data in the cloud

● Transform sensor data from a proprietary message for visualization

● Regenerate deterministic data to save bandwidth

● ETL into other systems (data warehouse, time-series DB)

Key considerations

● Keep source data separate from processed data

● Parallel processing on self-contained files

Schema evolution

● Version robot code + post-processing code together

● Version robot code + post-processing code separately

Record

Upload

Process

Analyze

Record

Upload

Process

Analyze

Multimodal replay is table stakes

● 3d scene, URDF model, images, maps, plots, logs, etc

● High-level overview down to frame-by-frame debugging

● Web-based access saves hours of time

● Help people help themselves

Discovery

● Annotate events & incidents

● Review & triage workflow

● Categorize root causes or escalate to engineering

Business insights

● Task completion rate or success rate

● Identify misbehaving robots

● SQL Data Warehouse (e.g. Snowflake, BigQuery)

Time-Series Aggregations

● Calculate mean/median/percentile metrics

● Find and visualize outliers

● Time series database (e.g. Prometheus, InfluxDB)

Full text search

● Find instances of certain errors or exceptions

● Quick way to log unstructured data

● Full text database (e.g. Elasticsearch)

Record

Upload

Process

Analyze

Simulations

● Observability into simulations is equally important!

● Sims can be recorded/uploaded/analyzed the same as production data

AI/ML training

● Training is not part of observability, but often relies on the same data

● Incident triage can feed training dataset

● Version training datasets separately

Retention

● Often cheap to retain lightweight telemetry indefinitely

● Consider access patterns & storage budget

● Legal concerns

Additional considerations

Thank you!

Adrian Macneil

Co-founder & CEO

https://foxglove.dev

	Slide Number 1
	Robots have graduated from the lab
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Observing robots at scale is complex
	Slide Number 9
	Slide Number 10
	Categories of robotics data
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Additional considerations
	Slide Number 19

