Robotics Observability

Scaling ROS from Prototype to Production

Adrian Macneil

Co-founder & CEO

😴 foxglove

Robots have graduated from the lab

Perceptive Automata shuts down after funding dries up

Transportation

Kirste

Ford, VW-backed Argo AI is shutting down

Autonomous tech boom darling Embark goes belly-up, lays off hundreds

Stephen Council, SFGATE March 6, 2023

Amazon Abandons Home Delivery Robot Tests in Latest Cost Cuts

Slow-moving cooler-sized Scout had been in testing since

Machine axed as Amazon adjusts to slower sales growth

Technology

Vertical farming robotics startup Fifth Season shuts down

AUTONOMOUS CARS / TRANSPO / TECH

Nuro plans for more layoffs as the AV sector's economic woes deepen / The robot

delivery company said it would pause production on its third-generation vehicle and scale back its

Alphabet closes Everyday Robots amo layoffs

By Brianna Wessling | February 24, 2023

NEW ECONOMIC REALITIES // MAY 5, 2023 = 5 MIN READ

What went wrong with Shopify's ques to build a logistics business

The hardest part about robotics?

JAVIER

Making it work

Does it operate effectively without intervention?

Can it deliver repeatable success?

Can it operate reliably at scale?

-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-		-	-		-	-	-	-		-	-
	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
				-	-				-	-								-	-				-	-		-	-	-	

Success in

production requires

a different approach

-																								
																								-
	-				-	-	-	-					-				-	-				-	-	
		-	-	-			-		-	-		-	-	-	-	-	-	-	-		-	-		
																			-		-	-		

Prototype

Get it working once SSH debugging Robots as pets

Production

Reliability at scale Centralized logging Robots as cattle

-			-																	-							-
																										-	
	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	-	-					-												-	-							

								-									
													-			-	
-						-							-		-	-	
-													-				

Your ability to determine the internal state of a system based on its observable outputs

Observability is understanding how your robots sense, think, and act

A DEXTER

Observing robots at scale is complex

Multimodal sensor data

Semantic state

Many devices

Distributed facilities

Limited bandwidth

-													
	-		-	-		-				-	-	-	
										-			

		-		-		-		-		-		-	
		-		-		-		-		-		-	
	-	-		-		-		-	-	-	-	-	-
		-		-		-				-			
		-											

The existing

tools weren't

built for this

-	-		-			-					-				-		
	-	-		-	-		-		-			-	-	-		-	

Traditional robotics dev tools

RViz, Rqt, etc

Support prototype development

No cloud-based workflows

Limited cross-platform support

Server observability tools

Grafana, Datadog, etc

Support logs/metrics/traces

No multimodal data

No support for edge recording

		-		-				-		 -	-		-	 -									-			
		-									-							 								
									-									 				 				
									-									 				 				

The four pillars of a robotics observability stack

Record Upload Process Analyze

Lightweight telemetry

- Pose, GPS, joint states, system state, etc
- Typically uploaded in near-real time
- Often useful for business insights / analytics

Downsampled sensor data

- Lower resolution or reduced framerate (e.g. 1hz front camera)
- Helpful for incident triage

Full resolution sensor data

- Raw camera images, lidar frames, etc
- Often necessary for debugging
- Can generate upwards of 1TB per hour!

Upload

Process

Analyze

Standardize log pipeline - avoid the "junk drawer" approach

- Don't record launch parameters to a separate .yaml file
- Don't stream logs to a .txt file use /rosout and save in your bag
- Don't log video to a separate .mp4 file

ROS 1 -> .bag ROS 2 -> .mcap

Recording files should be self-contained

- Everything necessary to reproduce internal state of the robot
- Simplifies parallel post-processing
- Guaranteed future accessibility
- Record server communication
- Don't forget latched topics!

Upload

Process

Analyze

File splitting

- Split based on time or file size (1 5 mins)
- Consider separate files for groups of topics
- Allows delete or upload discrete files avoid further processing on-device

Rolling record

- ROS node or cron job
- Delete old files based on available disk space

Compression

- Saves disk space, but uses additional cpu/memory
- Chunk compression (lossless)
- Avoid whole-file compression

Record Upload

Process

Analyze

Bandwidth is always a problem

- Warehouse robots often limited to 10 100 Mbps per site
- Agricultural robots are often lucky to have internet at all
- But some robots can record over 1 Gbps

Upload

Process

Analyze

Post-process data in the cloud

- Transform sensor data from a proprietary message for visualization
- Regenerate deterministic data to save bandwidth
- ETL into other systems (data warehouse, time-series DB)

Key considerations

- Keep source data separate from processed data
- Parallel processing on self-contained files

Schema evolution

- Version robot code + post-processing code together
- Version robot code + post-processing code separately

Upload

Record

Process

Analyze

Multimodal replay is table stakes

- 3d scene, URDF model, images, maps, plots, logs, etc
- High-level overview down to frame-by-frame debugging
- Web-based access saves hours of time
- Help people help themselves

Discovery

- Annotate events & incidents
- Review & triage workflow
- Categorize root causes or escalate to engineering

Upload

Process

Analyze

Business insights

- Task completion rate or success rate
- Identify misbehaving robots
- SQL Data Warehouse (e.g. Snowflake, BigQuery)

Time-Series Aggregations

- Calculate mean/median/percentile metrics
- Find and visualize outliers
- Time series database (e.g. Prometheus, InfluxDB)

Full text search

- Find instances of certain errors or exceptions
- Quick way to log unstructured data
- Full text database (e.g. Elasticsearch)

Simulations

- Observability into simulations is equally important!
- Sims can be recorded/uploaded/analyzed the same as production data

AI/ML training

- Training is not part of observability, but often relies on the same data
- Incident triage can feed training dataset
- Version training datasets separately

Retention

- Often cheap to retain lightweight telemetry indefinitely
- Consider access patterns & storage budget
- Legal concerns

Thank you!

Adrian Macneil

Co-founder & CEO

😴 foxglove