TlTechAuto |

Data-Flow
'Extensions for ROS2

ROSCon 2023
Christopher Helpa

TrTechAuto

Autonomous Driving — Safety

Critical Real-Time Systems

Requirements:
Safety (SW & System)

- oo B B o B s
Strong separation of concern processing

Many independent
applications coexisting

Control Actuation

High level of offline
analyzability

Guaranteed deadlines for
overall processing

TrTechAuto

Safety = guaranteed to be
functionally correct & within
bounded time

}

Autonomous Driving — Safety

Critical Real-Time Systems

Requirements: l
Safety (SW & System)

- oo B B o B s
Strong separation of concern processing

Many independent
applications coexisting

Control Actuation

High level of offline
analyzability

Guaranteed deadlines for
overall processing

TrTechAuto

Safety = guaranteed to be
functionally correct & within
bounded time

}

Autonomous Driving — Safety

Critical Real-Time Systems

Requirements: l
Safety (SW & System)

- oo B B o B s
Strong separation of concern processing

Many independent
applications coexisting

Control Actuation

2 °>~ \
e— gsgg!l—«k\
e e A\

415==—'h ‘o‘ 1O} D3

High level of offline
analyzability

Guaranteed deadlines for
overall processing

Timing requirements ~100ms

Inherently periodic

TrTechAuto

What we aim to
achieve

Defined and predictable execution

behaviour

)’ More stable and predictable End-
B/ 2-End Latency

Data-flow deterministic execution
across multiple processes

Control when temporal behaviour
does not match expectations

TrTechAuto
ROS2 I

Trigger Paradi Data-driven, time-
weaknesses rigger Paradigm Data-drvn, ime

Communication Pattern Bi-direction. Sync and

async
Communication Topics, services,
mechanism actions
Data driven leads to Participants 1:1, 1:n
unnecessary activations _ _ o _
Dispatching Implicit when data is
there

No n:1 communication

No notion of real-time
progress 100ms : Unexpected high execution
time prevents fulfilling deadline

Workaround: Timers

Indeterministic system
behaviour

Unsynchronized J— N:1 not properly supported in ROS2

Data-flow
NONY

Treat system as directed
acyclic graph (DAG)

Explicit dispatching decisions

Dispatch according to graph
constraints

Inspired by Zettascale’s
Zenoh-Flow (*) and Berkeley’s
ERDOS (**)

(*) https://github.com/eclipse-zenoh/zenoh-flow

(**)
https://dl.acm.org/doi/10.1145/3492321.3519576

Periodic trigger

Trigger Paradigm

Communication Pattern

Communication
mechanism

Participants

Dispatching

TrTechAuto

Data-driven, time- Data-flow driven
driven

Bi-direction. Sync and Uni-directional, async
async

Topics, services, topics

actions

1:1, 1:n 1:1,1:n,n:1

Implicit when data is Explicit when

there predecessors finished

Trigger callbacks based on
flow requirements

TrTechAuto

Explicit Data-flow
Execution (1)

During development

Create mapping of callbacks
and pub/sub topics

1 finished,
2,3,4 are ready 1

Build DAG of whole system

At runtime

Dispatch when all
predecessors have finished

Fully data-flow deterministic

TrTechAuto

Explicit Data-flow
Execution (2)

During development

Create mapping of callbacks
and pub/sub topics

Build DAG of whole system

At runtime

4 finished,
Bislllen Sl Can not yet dispatch 8
predecessors have finished y P

Fully data-flow deterministic

Extension 1: Data-
flow scheduling (1)

Explicit control allows
extensions

Real-time requirement
Stable predictable timing

Tolerate timing variability

Optimized E2E latency

Solution

Timing annotations

TrTechAuto

10

Extension 1: Data-
flow scheduling (2)

Solution

Timing annotations

Graph allows taking “future” 2 cores
into account

3 ready callbacks 1110

Heuristics to optimize system

Scheduling NP-complete

Derive priority from timing
annotations

Dispatch according to
priorities

TrTechAuto

Ready callbacks

2 3 4

CPU Cores

1"

TrTechAuto

Extension 1: Data-
flow scheduling (3)

Good Bad
dispatching dispatching

decision: decision:

Graph allows taking “future”

into account Step 1: 2,3,4 2,34
Step 2: 456 2
Heuristics to optimize system Step 3: 4.7 5.6
Step 4: 8 7
Step 5: - 8
Scheduling NP-complete 2 cores Overall Worst- 40 50
3 ready callbacks 110 Case Time

Derive priority from timing
annotations

Ready callbacks

Dispatch according to
priorities

CPU Cores

12

Extension 2: Timeout TrechAuto
handling for real-time
progress

What if callbacks exceed
timing budget?

Supervise exec time

Trigger successors on timing
violation

Trade Off: Determinism vs
Real-time progress

Callback can choose how to
handle

Callbacks know what
happened

Decide: Abort, shutdown. use Not timg _dgterministic but data & data-flow Data-flow & time deterministic but
old data etc. deterministic not data deterministic "

PoC Architecture

Single Host

Multiple Processes

Process-local executors

Central Data-flow Scheduler

Explicit dispatching decisions

Additional logic

Process

Data-flow
Scheduler

TrTechAuto

LT

Process
b Data-flow]
Executor Callbacks J
Process
Data-flow "
Executor Callbacks]
Process
o Data-flow]
Executor Callbacks]

.

14

TrTechAuto
H OW th e Data-flow Scheduler Data-flow Executor| Callbacks

scheduler works e

Determine

End
iteration

Reset
Graph State

Maintain graph state

Determine
highest priority
callbacks

Dispatch according to
schedule priorities

Coordinate local data-flow
executors

Trigger as
many callbacks
as free cores

Dispatch
callback

Timing supervision

Supervise
Timing

Callback
finished

Update
Graph State /

15

class MultiSub : public rclcpp::Node {

pUb\:ti;(:j callback() { TrreChAUtO
HOW to use —_— POC // Do the subscription o
for (auto sub_ptr : subscriptions) {

if (sub_ptr->take(msg, msg_info)) {
std::shared_ptr<void> type_erased_msg =
exa m Ie std::make_shared<std msgs::msg::String>(msg);
std::cout << " Value: " << msg.data.c_str() << "\n";
} else {
RCLCPP_WARN(this->get logger(), " | ->No message available");
}
}
// Add the business logic

// Do the publishing
for (auto pub_ptr : publishers) {
auto message = std _msgs::msg::String();
. . message.data = "my data";
Multi-rate external inputs? pub_ptr->publish(message);

1

DDS history

int main(int argc, char *argv[]) {
rclcpp::init(argc, argv);

std::vector<std::string> publish_topics {"topic3", "topic4"};
std::vector<std::string> subscribe_topics {"topicl", "topic2"};

auto node = std::make_shared<MyNode>("Node3", publish_topics, subscribe_topics);
// for each callback in node

DFSched: :CallbackInfoVector cinfo(1);

// here we define the callback that is going to be called when all predecessors are done
cinfo[@].callback_ptr = [&node]() { node->callback(); };

cinfo[@].subs = subscribe_topics;

cinfo[@].pubs = publish_topics;

// Time supervision based on thread CPU usage, realtime or no supervision at all
cinfo[@].supervision_kind = DFSched::TimeSupervision::ThreadCPUTime;
cinfo[@].runtime = 1000000; //in microseconds

cinfo[0].id = ©;

Read all samples

DFSched: :DFSExecutor executor(std::string("Node3"), cinfo);
executor.spin();

TrTechAuto

—_—
Lanelet? Map

Evaluation & Results 1
of PoC

B —
Point Cloud Map

Vehicle DBW System

Raspberry Pl 4

autoware_reference_system

Autoware reference system E2E Latency (Vehicle DBW Latency)

[ROS 2 Default — (MAX) |- ... -] (MIN) — (MEDIAN)
[Data-flow Random 3 (p9s) [...]...1(p3) ® e
3 Data-flow Scheduled
200 A 200
1 Node = 1 Process
1751 175 1
. 150 4 150 §
Different crunch values for l
callbacks = 125 4 125]
1004 100 +
X
Scheduling S
E 75 4 75 1 X
50 4 50 4
Still performing all work ; % ‘j;z' %
25 25
1 gy
T 4] T 4] T T
2 Cores 3 Cores 4 Cores

Without timeout handling 17

Summary TrTechAuto

Main results

» Data-flow approach allows:
* More deterministic and predictable runtime behaviour
 Fully data-flow & data deterministic when timing is not relevant (during functional testing)
» Guaranteed forward progress (for real-time requirements in the field)
» Better control over temporal behaviour
 Explicit control of dispatching enables adding custom logics
» E.g. Scheduling/Timeout handling
» But more possible

- Applications needs to be adapted to make proper use of » Potentially fix some limitations/add new features:
approach Distinguish between critical and non-critical callbacks

« Handling timeouted callbacks is delicate » More graceful handling of timeouted threads

« Async data handling in communication stack is problematic Trigger callbacks every n’th cycle
for polling access to topic — Improvements to comm stack « Performance optimizations
would be beneficial - Discuss general usefulness for the ROS2 community and

how to contribute 18

I I ICLII'HULU = Lullueniudil

TrTechAuto

Thank you

in www.tttech-auto.com

Follow us on LinkedIn Copyright © TTTech Auto AG. All rights reserved.

https://www.tttech-auto.com/
https://www.linkedin.com/company/tttech-auto/mycompany/?viewAsMember=true
https://www.linkedin.com/company/tttech-auto/mycompany/?viewAsMember=true

	Real-time Data-Flow �Extensions for ROS2
	Autonomous Driving – Safety Critical Real-Time Systems
	Autonomous Driving – Safety Critical Real-Time Systems
	Autonomous Driving – Safety Critical Real-Time Systems
	What we aim to achieve
	ROS2 �weaknesses
	Data-flow�ROS2
	Explicit Data-flow Execution (1)
	Explicit Data-flow Execution (2)
	Extension 1: Data-flow scheduling (1)
	Extension 1: Data-flow scheduling (2)
	Extension 1: Data-flow scheduling (3)
	Extension 2: Timeout handling for real-time progress
	PoC Architecture
	How the �scheduler works
	How to use – POC�example
	Evaluation & Results of PoC
	Summary
	Thank you

