PICKNIK

> Movelt

Optimizing Movelt

Costs, Constraints and Betterments

October 19, 2023

Lars Henning Kayser Movelt Chief Architect henningkayser@picknik.ai

about me

• 2018

- M.Sc. CS at University of Hamburg, TAMS robotics lab
- Hired by PickNik after introduction at ROSCon Madrid

• Since then

- 20+ clients, leading 6 projects
 - industrial, medical, construction, agriculture, logistics, ...
 - primarily consulting and R&D, motion planning Movelt, C++
- Movelt ROS 2 migration, ROSin project (EU Horizon 2020)
- Now: Movelt Chief Architect (or Archeologist?)
 - OSS Maintenance, internal R&D, TSC member

01

02

Inverse Kinematics Solving / Sampling / Optimizing

Motion Planning Searching / Optimizing / Ranking

Miscellaneous 03 Projects / Python / Parameters / PRs

Inverse Kinematics

$\bullet \bullet \bullet$

Solving / Sampling / Optimizing

Example: Turtle Cleaning Robot

repo: https://github.com/henningkayser/roscon23_moveit

Problem: Find initial robot state to gently apply scrubber!

Solver Plugins

IKFast

repo: Movelt

KDL

repo: Movelt

trac_ik repo: https://bitbucket.org/traclabs/trac_ik/src/rolling-devel/

bio_ik repo: <u>https://github.com/TAMS-Group/bio_ik</u> ros2: <u>https://github.com/PickNikRobotics/bio_ik/tree/ros2</u>

pick_ik repo: <u>https://github.com/PickNikRobotics/pick_ik</u>

Configuration: kinematics.yaml

C++ Implementation

	•	•	•	- N	•		
/	1 n	1 T.	12		1.1	70	•
/	 4 U U	тu	та	÷.,	÷.,		•

11

RobotState	target_state
------------	--------------

- // JointModelGroup arm_group
- // PoseStamped turtle_pose

```
PoseStamped target_pose = turtle_pose;
target_pose.position.z += turtle_radius;
```

target_state.setFromIK(arm_group, target_pose);

Very often

Sometimes

We don't always want or need fully constrained target poses

- Tools can often be applied with some tolerance
 - Suction grippers, laser scanning, spin scrubbers ...
- We may compromise orientation accuracy for position accuracy
 - Laser cutting, welding, assembly
- Unstructured robot environments may require
 - Additional safety margins, collision clearance
- Reachability issues may lead to
 - joint flips, high failure rate, solutions near singularities or joint limits

We can increase the solution space using problem-specific constraints!

Constraints are rules that decide the binary validity of a state

• Implementation types

- Threshold functions with target value and tolerance range
- Bool functions that perform on non-gradient metrics
- Movelt supports
 - **Position, Orientation, Joint, Visibility** constraints
 - Collisions, joint limits are implicitly constraining solutions

We can model the space of valid poses as single position constraint!

PositionConstraint (moveit msgs)

string link name **IK link** moveit msgs/BoundingVolume constraint region \leftarrow tiny primitive shape, sphere at center of turtle float64 weight (unused for now)

IK - Constraint Sampler

#include <moveit/constraint_samplers/constraint_sampler_manager.h>
#include <moveit/kinematic_constraints/utils.h>

// ... init std::string link_name, PlanningScene scene

```
geometry_msgs::msg::PointStamped target_point;
target_point.header = turtle_pose.header;
target_point.point = turtle_pose.pose.position;
```

```
geometry_msgs::msg::Point link_offset;
link_offset.z = turtle_radius;
```

```
using kc = kinematic_constraints;
auto constraints = kc::constructGoalConstraints(link_name, link_offset, target_point);
```

```
constraint_samplers::ConstraintSamplerManager sampler_manager;
auto goal_sampler =
  sampler_manager.selectSampler(scene, arm_group->getName(), constraints);
```

```
goal_sampler->sample(target_state);
```

IK - Constraint Sampler

Obviously, collision checks are not enabled here.

We either have to reject a lot of samples (costly!) or add additional constraints.

What if we want quality criteria like ...

- 1. reducing the joint distance from the current configuration
- 1. repeatable or at least similar solutions
- 1. preference for contact points near an ideal target

... and all that at the same time?

Plugin Implementation

- Thread-safe reimplementation of bio_ik
- Provides gradient descent (local) and memetic (global) optimization
- Built-in cost objectives
 - minimal displacement
 - center joints
 - avoid joint limits
- Supports dynamic parameter updates

Configuration: kinematics.yaml

manipulator:

kinematics_solver: pick_ik/PickIkPlugin mode: global # global, local position_scale: 1.0 # factor for position distance cost rotation_scale: 0.5 # factor for rotation distance cost position_threshold: 0.005 # max allowed position cost orientation_threshold: 0.01 # max allowed orientation cost minimal_displacement_weight: 0.0 # minimize seed distance center_joints_weight: 0.0 # keep joint values centered avoid_joint_limits_weight: 0.0 # penalize states near limits

... and implements Movelt's new IK Cost function API!

IK - Cost Function API

Inject quality metrics into IK solver plugins

- IK callback for computing cost values for solver-internal samples
- Currently, only supported by pick_ik, bio_ik (ros2 PickNik fork)

// moveit_core/kinematics_base/.../kinematics_base.h, class KinematicsBase

IK - Constraint -> Cost Function


```
// ...
kc::KinematicConstraintSet constraints_validator(robot_model);
constraints_validator.add(constraints, scene->getTransforms());
auto constraints_cost_fn = [&](const geometry_msgs::msg::Pose& /* target_pose */,
                               const RobotState& sample_state,
                               const JointModelGroup* /* group */,
                               const std::vector<double>& /* seed_positions */)
{
  return constraints_validator.decide(sample_state).distance;
};
target_state.setFromIK(arm_group,
                       target_pose,
                       0.05, /* seconds timeout */
                       GroupStateValidityCallback(),
                       KinematicsQueryOptions(),
                       constraints_cost_fn);
```

IK - Constraint -> Cost Function

- We still pass the initial target pose to the IK call
- Setting return_approximate_solution to true allows diverging from it
- pick_ik provides additional *approximate_** parameters for tuning cost thresholds

Same start state (20 solutions)

Random start state (20 solutions)

Advanced Use Cases

• Cartesian Interpolation

Movelt's Cartesian Interpolator supports IK cost functions!

• Visual Servoing

"local" modes are feasible for computing controller waypoints online (requires post-processing)

• Collision Clearance

A collision distance check as cost function allows "pushing" the robot away from obstacles

Limitations

• Conflicting Cost Terms

"Too many cooks..." - already position and orientation targets may conflict, produce offsets

• Performance

cost functions need to be very efficient, otherwise solver time explodes

• Weighting

Cost terms are balanced by weight. Tuning them may come close to "magic numbers"

IK - Take Aways

Fully constrained IK can have undesired side effects

- restricts solution space too much
- o can produce reachability issues, joint flips
- "bad" IK solutions can cause path sampling and motion planning issues

Constraints define some IK problems more elegantly

- increase the solution space
- enable trade offs between solution accuracy and quality criteria
- IK constraints can be sampled and filtered

Cost Functions allow optimizing quality metrics

- o cost functions can be derived from constraints with distance metrics
- IK Solvers can optimize for multiple weighted cost functions at the same time
- Optimization can be global or local, depending on the problem

Motion Planning

$\bullet \bullet \bullet$

Searching / Optimizing / Ranking

Planning with Constraints (OMPL)

... is very difficult!

- OMPL used to sample states in **joint space** or **Cartesian space**
 - joint samples require validation = Rejection Sampling
 - Cartesian samples require IK
- Interpolated states need to be validated as well
- Best approach so far was using a search space (= constraint manifold) approximation
 - pre-computed database with valid states
 - Sucan et al, IROS 2012!

PICKNIK

Planning with Constraints (OMPL)

PICKNIK

OMPL Constrained Planning

- New adapters to OMPL's constrained planning framework (<u>Kingston, 2019</u>)
- Projects sampled states into the constraint manifold using error Jacobian
 - o optimization on constraint derivative gradient
- Supports any OMPL planning algorithm
- Implemented for **Position** (BOX), **Orientation**, and **Equality**

Tutorial https://moveit.picknik.ai/main/doc/how_to_guides/using_ompl_constrained_planning/ompl_constrained_planning.html

Stochastic Trajectory Optimization for Motion Planning

- Finds smooth collision free paths using probabilistic optimization
- Starts with an initial (maybe infeasible) guess
- The initial path is iteratively optimized by minimizing individual waypoint costs over randomized samples
- Advantages:
 - Cost function does not need to be differentiable
 - Can incorporate additional cost terms

PICKNIK

Stochastic Trajectory Optimization for Motion Planning

- Finds smooth collision free paths using probabilistic optimization
- Starts with an initial (maybe infeasible) guess
- The initial path is iteratively optimized by minimizing individual waypoint costs over randomized samples
- Advantages:
 - Cost function does not need to be differentiable
 - Can incorporate additional cost terms

Complete reimplementation!

- C++ callbacks instead of plugins
 - noise, costs, filter, post conditions
 - supports arbitrary constraints
 - caveat: probably more useful for post processing OMPL if problem is challenging
- NOTE: cost function API similar to CostIKFn() is WIP!

Tutorial https://moveit.picknik.ai/main/doc/how_to_guides/stomp_planner/stomp_planner.html

Parallel Planning

Solution quality depends on the planning algorithm

-> Picking the best algorithm for a given problem is not intuitive

Even the "best" algorithm can fail

-> In this case we need a fallback planner

Approach Run a Portfolio of Planners in parallel and pick the best!

Parallel Planning

PICKNIK

Semi-autonomous choice of the most suitable planner for a given problem

- Customizable stopping criteria
- Customizable solution selection
- Good default but no "real" optimization

Miscellaneous

$\bullet \bullet \bullet$

Projects / Python / Parameters / PRs

Iron Release Henning Kayser

Isaac Integration Marg Rasmussen & Jafar Abdi

Unifying Parameter Approach Tyler Weaver

GSoC: Python Bindings

Peter David Fagan

GSoC: IK Benchmarking

Mohamed Raessa & Sebastian Castro

GSoC: Servo Refactor

Mohammed Ibrahim & Sebastian Castro

generate_parameters_library

- declarative, validatable and (almost) self-documenting ROS 2 parameters
- repo: <u>https://github.com/PickNikRobotics/generate_parameter_library</u>

Visit Tyler Weaver's talk "Parameters should be boring"! tomorrow, 2:10 PM CST, "ROS Development" track

Python Bindings

moveit_py

2022 GSoC - Peter David Fagan

- Python bindings to MoveltCpp and moveit_core classes
- Goal: facilitate integrating and prototyping with other Python libraries

Tutorial

https://moveit.picknik.ai/main/doc/examples/motion_planning_python_api/motion_planning_python_api_tutorial.html

rclpy.init()
logger = rclpy.logging.get_logger("moveit_py")

instantiate MoveItPy instance and get planning component robot = MoveItPy(node_name="moveit_py") robot_arm = robot.get_planning_component("arm") logger.info("MoveItPy instance created")

set plan start and goal states using predefined states robot_arm.set_start_state(configuration_name="ready") robot_arm.set_goal_state(configuration_name="extended")

```
# plan to goal
arm_motion = robot_arm.plan()
```

```
# execute trajectory
if (arm_motion):
    robot.execute(arm_motion.trajectory)
```


Learning

Deep neural network

Perception

Simulation

Benchmarking

Parameter Tuning

Data Visualization

Grow Community - We want YOU to start playing with this!

What use cases are you interested in? Which Python library would you like to integrate? What interfaces do you need for that?

Movelt Project Planning

Weekly Developer Standup Tuesdays, 8:30AM Mountain Time

Monthly Working Group / Movelt Maintainer Meeting 4th Thursday, 9AM Mountain Time BOS Discourse

Ξ	O ros-planning / Projects / Movelt	Q Type [] to search			> + • • n @ 1			
•	Movelt							
("I My ToDo's I II My Reviews E Issues to prioritize E Issues to assign	PRs to review	Assigned 🗄	Discussion	🗄 By size 🛛 🗄 Bugs 🚽	- New V	liew	
Ŧ	is:open no:assignee is:issue					155 (Discard Save	
	Title	Status	Priority	8	Labels ···	Rep	pository	
~	🔘 📫 Medium 💷							
1	O Segfault in moveit_rviz_plugin::MotionPlanningDisplay::fixedFrameChanged() #1942		Medium	(*)	bug stale	- 📮	ros-planning/moveit2	
2	⊙ Planning Scene Monitor ignores planning_scene topic name #1820	Backlog	Medium	(w)	bug E-medium stale	- P	ros-planning/moveit2	
3	\bigodot Removed collision objects linger on somewhere colliding with the robot $\#1775$		Medium	(m.)	bug E-medium stale	~	nos-planning/moveit2	
4	 Position constraint violated #1507 	Backlog	Medium	*	bug	~ Ģ	ros-planning/moveit2	
5	○ CHOMP optimizer exits after first iteration as collision-free #1409	Backlog	Medium	(w)	question	~ 📮	ros-planning/moveit2	
6	⊙ Don't ignore CollisionObject's pose on getKnownObjectNamesInROI #1341	Backlog -	Medium		bug E-hard	~ 📮	- 📮 ros-planning/moveit2	
7	○ Pilz execution fails on 'invalid transition from state EXECUTING with event #1337	Backlog	Medium	(W)	bug	~ 📮	r 📮 ros-planning/moveit2	
8	○ TOTG jump in position at the first waypoint #810	Backlog	Medium		w. bug		ros-planning/moveit2	
9	⊙ Break out parameters for servo publish rate and trajectory point d #2275	Backlog	Medium		enhancement	-	ros-planning/moveit2	
10	⊙ Running a Movelt launch file messes with terminal colors #2324	Backlog	Medium	Ψ.	(bug) persistent	- P	ros-planning/moveit2	
+	Add item							
~	○ ♣ Low 11							
11	• Warnings when a child-frame of a parent which is not the planning-frame is #1954		a Low		(bug) persistent	- Q	ros-planning/moveit2	

All contributors are welcome! Request an invite via henningkayser@picknik.ai

Contribute to Movelt

Review and file PRs Engage in issue discussions Join the meetings Become a Core Contributor or Maintainer

Apply for GSoC 2024

12+ weeks focused programming Mentored by Movelt maintainers Details will be shared end of 2023

Google Summer of Code

Thank You!

