
Optimizing MoveIt
Costs, Constraints and

Betterments

October 19, 2023

Lars Henning Kayser
MoveIt Chief Architect

henningkayser@picknik.ai

Quick facts

about me

● 2018

○ M.Sc. CS at University of Hamburg, TAMS robotics lab

○ Hired by PickNik after introduction at ROSCon Madrid

● Since then

○ 20+ clients, leading 6 projects

■ industrial, medical, construction, agriculture, logistics, …

■ primarily consulting and R&D, motion planning - MoveIt, C++

○ MoveIt ROS 2 migration, ROSin project (EU Horizon 2020)

● Now: MoveIt Chief Architect (or Archeologist?)
○ OSS Maintenance, internal R&D, TSC member

Optimizing MoveIt

01

02

03

Motion Planning
Searching / Optimizing / Ranking

Miscellaneous
Projects / Python / Parameters / PRs

Inverse Kinematics
Solving / Sampling / Optimizing

Inverse Kinematics

Solving / Sampling / Optimizing

IK - Problem

Example: Turtle Cleaning Robot
repo: https://github.com/henningkayser/roscon23_moveit

Problem: Find initial robot state to gently apply scrubber!

https://github.com/henningkayser/roscon23_moveit

IK - Solvers

Solver Plugins

IKFast
repo: MoveIt

KDL
repo: MoveIt

trac_ik
repo: https://bitbucket.org/traclabs/trac_ik/src/rolling-devel/

bio_ik
repo: https://github.com/TAMS-Group/bio_ik
ros2: https://github.com/PickNikRobotics/bio_ik/tree/ros2

pick_ik
repo: https://github.com/PickNikRobotics/pick_ik

// … initialize:

// RobotState target_state

// JointModelGroup arm_group

// PoseStamped turtle_pose

PoseStamped target_pose = turtle_pose;

target_pose.pose.position.z += turtle_radius;

target_state.setFromIK(arm_group, target_pose);

manipulator:

kinematics_solver: kdl_kinematics_plugin/KDLKinematicsPlugin

…

Configuration: kinematics.yaml

C++ Implementation

https://bitbucket.org/traclabs/trac_ik/src/rolling-devel/
https://github.com/TAMS-Group/bio_ik
https://github.com/PickNikRobotics/bio_ik/tree/ros2
https://github.com/PickNikRobotics/pick_ik

IK - Solution

Very often Sometimes

IK - Limitations

We don’t always want or need fully constrained target poses

● Tools can often be applied with some tolerance
○ Suction grippers, laser scanning, spin scrubbers …

● We may compromise orientation accuracy for position accuracy
○ Laser cutting, welding, assembly

● Unstructured robot environments may require
○ Additional safety margins, collision clearance

● Reachability issues may lead to
○ joint flips, high failure rate, solutions near singularities or joint limits

We can increase the solution space using problem-specific constraints!

IK - Constraints

Constraints are rules that decide the binary validity of a state

● Implementation types
○ Threshold functions with target value and tolerance range

○ Bool functions that perform on non-gradient metrics

● MoveIt supports
○ Position, Orientation, Joint, Visibility constraints

○ Collisions, joint limits are implicitly constraining solutions

IK - Position Constraint

We can model the space of valid poses as single position constraint!

PositionConstraint (moveit_msgs)
std_msgs/Header header turtle pose frame

string link_name IK link

geometry_msgs/Vector3 target_point_offset IK frame offset, turtle radius along Z-axis

moveit_msgs/BoundingVolume constraint_region tiny primitive shape, sphere at center of turtle

float64 weight (unused for now)

https://docs.ros.org/en/melodic/api/std_msgs/html/msg/Header.html
https://docs.ros.org/en/melodic/api/geometry_msgs/html/msg/Vector3.html
https://docs.ros.org/en/melodic/api/moveit_msgs/html/msg/BoundingVolume.html

IK - Constraint Sampler

#include <moveit/constraint_samplers/constraint_sampler_manager.h>

#include <moveit/kinematic_constraints/utils.h>

// … init std::string link_name, PlanningScene scene

geometry_msgs::msg::PointStamped target_point;

target_point.header = turtle_pose.header;

target_point.point = turtle_pose.pose.position;

geometry_msgs::msg::Point link_offset;

link_offset.z = turtle_radius;

using kc = kinematic_constraints;

auto constraints = kc::constructGoalConstraints(link_name, link_offset, target_point);

constraint_samplers::ConstraintSamplerManager sampler_manager;

auto goal_sampler =

sampler_manager.selectSampler(scene, arm_group->getName(), constraints);

goal_sampler->sample(target_state);

IK - Constraint Sampler

Obviously, collision checks are not enabled here.

We either have to reject a lot of samples (costly!) or add additional constraints.

IK - Solution Quality

What if we want quality criteria like …

1. reducing the joint distance from the current configuration

1. repeatable or at least similar solutions

1. preference for contact points near an ideal target

… and all that at the same time?

IK - pick_ik

Plugin Implementation

● Thread-safe reimplementation of bio_ik

● Provides gradient descent (local) and

memetic (global) optimization

● Built-in cost objectives

○ minimal displacement

○ center joints

○ avoid joint limits

● Supports dynamic parameter updates

manipulator:

kinematics_solver: pick_ik/PickIkPlugin

mode: global # global, local

position_scale: 1.0 # factor for position distance cost

rotation_scale: 0.5 # factor for rotation distance cost

position_threshold: 0.005 # max allowed position cost

orientation_threshold: 0.01 # max allowed orientation cost

minimal_displacement_weight: 0.0 # minimize seed distance

center_joints_weight: 0.0 # keep joint values centered

avoid_joint_limits_weight: 0.0 # penalize states near limits

Configuration: kinematics.yaml

… and implements MoveIt’s new IK Cost function API!

IK - Cost Function API

Inject quality metrics into IK solver plugins

● IK callback for computing cost values for solver-internal samples

● Currently, only supported by pick_ik, bio_ik (ros2 PickNik fork)

// moveit_core/kinematics_base/…/kinematics_base.h, class KinematicsBase

using IKCostFn = std::function<double(const geometry_msgs::msg::Pose& target_pose,

const moveit::core::RobotState& sample_state,

const moveit::core::JointModelGroup* group,

const std::vector<double>& seed_positions)>;

IK - Constraint -> Cost Function

// …

kc::KinematicConstraintSet constraints_validator(robot_model);

constraints_validator.add(constraints, scene->getTransforms());

auto constraints_cost_fn = [&](const geometry_msgs::msg::Pose& /* target_pose */,

const RobotState& sample_state,

const JointModelGroup* /* group */,

const std::vector<double>& /* seed_positions */)

{

return constraints_validator.decide(sample_state).distance;

};

target_state.setFromIK(arm_group,

target_pose,

0.05, /* seconds timeout */

GroupStateValidityCallback(),

KinematicsQueryOptions(),

constraints_cost_fn);

IK - Constraint -> Cost Function

// …

auto ik_options = kinematics::KinematicsQueryOptions();

ik_options.return_approximate_solution = true;

target_state.setFromIK(arm_group,

target_pose,

0.05, /* seconds timeout */

GroupStateValidityCallback(),

ik_options,

constraints_cost_fn);

● We still pass the initial target pose to the IK call

● Setting return_approximate_solution to true allows diverging from it

● pick_ik provides additional approximate_* parameters for tuning cost thresholds

IK - pick_ik Solutions

Same start state (20 solutions) Random start state (20 solutions)

Optimization-based IK

Advanced Use Cases

● Cartesian Interpolation
MoveIt’s Cartesian Interpolator supports IK cost functions!

● Visual Servoing
“local” modes are feasible for computing controller waypoints online (requires post-processing)

● Collision Clearance
A collision distance check as cost function allows “pushing” the robot away from obstacles

Optimization-based IK

Limitations

● Conflicting Cost Terms
“Too many cooks…” - already position and orientation targets may conflict, produce offsets

● Performance
cost functions need to be very efficient, otherwise solver time explodes

● Weighting
Cost terms are balanced by weight. Tuning them may come close to “magic numbers”

IK - Take Aways

Fully constrained IK can have undesired side effects
○ restricts solution space too much

○ can produce reachability issues, joint flips

○ “bad” IK solutions can cause path sampling and motion planning issues

Constraints define some IK problems more elegantly
○ increase the solution space

○ enable trade offs between solution accuracy and quality criteria

○ IK constraints can be sampled and filtered

Cost Functions allow optimizing quality metrics
○ cost functions can be derived from constraints with distance metrics

○ IK Solvers can optimize for multiple weighted cost functions at the same time

○ Optimization can be global or local, depending on the problem

Motion Planning

Searching / Optimizing / Ranking

… is very difficult!

● OMPL used to sample states in joint space or

Cartesian space

○ joint samples require validation = Rejection

Sampling

○ Cartesian samples require IK

● Interpolated states need to be validated as well

● Best approach so far was using a search space

(= constraint manifold) approximation

○ pre-computed database with valid states

○ Sucan et al, IROS 2012!

Planning with Constraints (OMPL)

https://ieeexplore.ieee.org/abstract/document/6386092

Planning with Constraints (OMPL)

OMPL Constrained Planning

● New adapters to OMPL’s constrained planning
framework (Kingston, 2019)

● Projects sampled states into the constraint manifold
using error Jacobian
○ optimization on constraint derivative gradient

● Supports any OMPL planning algorithm
● Implemented for Position (BOX), Orientation,

and Equality

Tutorial https://moveit.picknik.ai/main/doc/how_to_guides/using_ompl_constrained_planning/ompl_constrained_planning.html

https://www.kavrakilab.org/publications/kingston2019exploring-implicit-spaces-for-constrained.pdf
https://moveit.picknik.ai/main/doc/how_to_guides/using_ompl_constrained_planning/ompl_constrained_planning.html

STOMP

Stochastic Trajectory Optimization for Motion Planning

● Finds smooth collision free paths using probabilistic optimization

● Starts with an initial (maybe infeasible) guess

● The initial path is iteratively optimized by minimizing individual

waypoint costs over randomized samples

● Advantages:

○ Cost function does not need to be differentiable

○ Can incorporate additional cost terms

STOMP

Stochastic Trajectory Optimization for Motion Planning

● Finds smooth collision free paths using probabilistic optimization

● Starts with an initial (maybe infeasible) guess

● The initial path is iteratively optimized by minimizing individual

waypoint costs over randomized samples

● Advantages:

○ Cost function does not need to be differentiable

○ Can incorporate additional cost terms

Complete reimplementation!

● C++ callbacks instead of plugins

○ noise, costs, filter, post conditions

○ supports arbitrary constraints

■ caveat: probably more useful for post

processing OMPL if problem is challenging

● NOTE: cost function API similar to CostIKFn() is WIP!
Tutorial https://moveit.picknik.ai/main/doc/how_to_guides/stomp_planner/stomp_planner.html

Parallel Planning

Solution quality depends on the planning algorithm
-> Picking the best algorithm for a given problem is not intuitive

Even the “best” algorithm can fail
-> In this case we need a fallback planner

Approach

Run a Portfolio of Planners in parallel and pick the best!

Parallel Planning

Semi-autonomous choice of the most

suitable planner for a given problem

● Customizable stopping criteria

● Customizable solution selection

● Good default but no “real” optimization

Miscellaneous

Projects / Python / Parameters / PRs

Iron Release
Henning Kayser

Isaac Integration
Marq Rasmussen & Jafar Abdi

Unifying Parameter Approach
Tyler Weaver

Major Contributions

GSoC: Python Bindings
Peter David Fagan

GSoC: IK Benchmarking
Mohamed Raessa & Sebastian Castro

GSoC: Servo Refactor
Mohammed Ibrahim & Sebastian Castro

Parameters

generate_parameters_library

● declarative, validatable and (almost) self-documenting ROS 2 parameters

● repo: https://github.com/PickNikRobotics/generate_parameter_library

Visit Tyler Weaver’s talk “Parameters should be boring”!

tomorrow, 2:10 PM CST, “ROS Development” track

https://github.com/PickNikRobotics/generate_parameter_library

Python Bindings

moveit_py

2022 GSoC - Peter David Fagan

● Python bindings to MoveItCpp

and moveit_core classes

● Goal: facilitate integrating and

prototyping with other Python libraries

Tutorial

https://moveit.picknik.ai/main/doc/examples/motion_planning_python_api/motion_planning_python_api_tutorial.html

rclpy.init()

logger = rclpy.logging.get_logger("moveit_py”)

instantiate MoveItPy instance and get planning component

robot = MoveItPy(node_name="moveit_py")

robot_arm = robot.get_planning_component("arm")

logger.info("MoveItPy instance created")

set plan start and goal states using predefined states

robot_arm.set_start_state(configuration_name="ready")

robot_arm.set_goal_state(configuration_name="extended")

plan to goal

arm_motion = robot_arm.plan()

execute trajectory

if (arm_motion):

robot.execute(arm_motion.trajectory)

https://moveit.picknik.ai/main/doc/examples/motion_planning_python_api/motion_planning_python_api_tutorial.html

Advanced Use Cases

Perception

Simulation

Learning

Benchmarking

Parameter Tuning

Data Visualization

Future Work? Community!

Grow Community - We want YOU to start playing with this!

What use cases are you interested in?

Which Python library would you like to integrate?

What interfaces do you need for that?

MoveIt Project Planning

Weekly Developer Standup

Tuesdays, 8:30AM Mountain Time

Monthly Working Group /

MoveIt Maintainer Meeting

4th Thursday, 9AM Mountain Time

All contributors are welcome! Request an invite via henningkayser@picknik.ai

Get Involved!

Apply for GSoC 2024
12+ weeks focused programming

Mentored by MoveIt maintainers

Details will be shared end of 2023

Contribute to MoveIt
Review and file PRs

Engage in issue discussions

Join the meetings

Become a Core Contributor or Maintainer

Thank You!

Thank You!

	Slide Number 1
	Quick facts
	Slide Number 3
	Slide Number 4
	IK - Problem
	IK - Solvers
	IK - Solution
	IK - Limitations
	IK - Constraints
	IK - Position Constraint
	IK - Constraint Sampler
	IK - Constraint Sampler
	IK - Solution Quality
	IK - pick_ik
	IK - Cost Function API
	IK - Constraint -> Cost Function
	IK - Constraint -> Cost Function
	IK - pick_ik Solutions
	Optimization-based IK
	Optimization-based IK
	IK - Take Aways
	Slide Number 22
	Planning with Constraints (OMPL)
	Planning with Constraints (OMPL)
	STOMP
	STOMP
	Parallel Planning
	Parallel Planning
	Slide Number 29
	Major Contributions
	Parameters
	Python Bindings
	Advanced Use Cases
	Future Work? Community!
	MoveIt Project Planning
	Get Involved!
	Slide Number 37

