On Use of Nav2

MPPI Controller

LU

Steve Macenski, Open Navigation LLC

Launching Nav2, ROS, and the Community into the Future!

- Your Friendly Neighborhood Navigators!
- Develop & Maintain Open-Source Mobile Robotics, Long-Term
- Sponsored by Those Using ROS / Nav2 for Products & Services
- Offering Support Services to Power Users' Success

Looking for Additional Sponsors and Partners!

• Find me after the talk or email me at info@opennav.org

Overview

Background - Trajectory Planning

"How Do I Follow This Objective?"

Trajectory Planning Aims to:

- Track paths or goals
- Avoid obstacles
- Compute feasible commands
- Optimize for behavioral objectives
- Achieve goal(s) with high accuracy

This is the Behavior of a Robot a Person Sees

Important beyond engineering metrics!

Many Types of Approaches Exist

- Solve for 1+ or all of the aims
- MPC, DWA, PP, Splines, Primitives, APF

Background - ROS Trajectory Planning

What Options Did We Have Before?

Navigation Stack

- Base Local Planner
- DWA Local Planner

Nav2

- DWB Controller
- Reg. Pure Pursuit Controller
- Rotation Shim

The Community

- TEB Local Planner
- Graceful

→ No Contemporary Approaches

Common Complaints

"The Nav Stack keeps running into walls."

"Why does my robot get stuck so much?"

"God, tuning this is such a pain!"

"Recoveries are constantly triggering"

"I wish I went to medical school instead..."

The root cause is *usually* the trajectory planner *

Overview

- 1. Add Noises to Prior Optimal Trajectory's Controls
- 2. Apply Dynamics to Controls & Rollout Trajectories
- 3. Score Noised Trajectories Via Objective Functions
- 4. Compute New Optimal Control Sequence
- 5. Execute First Control, Shift Optimal Control. Repeat.

- 1. Add Noises to Prior Optimal Trajectory's Controls
- 2. Apply Dynamics to Controls & Rollout Trajectories
- 3. Score Noised Trajectories Via Objective Functions
- 4. Compute New Optimal Control Sequence
- 5. Execute First Control, Shift Optimal Control. Repeat.

- 1. Add Noises to Prior Optimal Trajectory's Controls
- 2. Apply Dynamics to Controls & Rollout Trajectories
- **3. Score Noised Trajectories Via Objective Functions**
- 4. Compute New Optimal Control Sequence
- 5. Execute First Control, Shift Optimal Control. Repeat.

Sampling-Based Model Predictive Control

- 1. Add Noises to Prior Optimal Trajectory's Controls
- 2. Apply Dynamics to Controls & Rollout Trajectories
- 3. Score Noised Trajectories Via Objective Functions
- 4. Compute New Optimal Control Sequence
- 5. Execute First Control, Shift Optimal Control. Repeat.

Find more information: "Information Theoretic Model Predictive Control: Theory and Applications to Autonomous Driving"

- 1. Add Noises to Prior Optimal Trajectory's Controls
- 2. Apply Dynamics to Controls & Rollout Trajectories
- 3. Score Noised Trajectories Via Objective Functions
- 4. Compute New Optimal Control Sequence
- 5. Execute First Control, Shift Optimal Control. Repeat.
- \rightarrow No Derivatives or Required Objectives Convexity \rightarrow Arbitrary Dynamics, Constraints, and Objectives

Overview

MPPI Controller - Overview

Model Predictive Path Integral Controller

(ļ)	
	÷		
	÷		
	2		

Cutting-Edge Predictive Controller Used in AV's

Emergent Intelligent Behaviors - Far Fewer Recoveries

Circular, Non-Circular, Legged, Ackermann, Diff & Omni

Plugin-Based Critic Functions For Behavioral Expansion

97% Unit Test Coverage, Used in Production Today

MPPI Controller - More Details

Designed to be the Last I'll Ever Write - famous last words

Tuned for Great Out-of-the-Box Performance!

Superior in Tricky Situations, Highly Flexible

Accepts Feasible Paths, Respects Path Inversions

CPU-Only @ 30-50 Hz, No GPU Lock-In

Future Improvements + Innovations in Research → CPU speed, GPU support, smoothness, dynamics models, addtl critics, ...

Major Thanks to Alexey Budyakov (@artofnothingness)

Original Prototype Author & Proactive Collaborator

MPPI Controller - Configuration

See README For Details & Guidance

10 Optional Critics

3 Motion Models

Batch Size - # of Sampled Trajectories Time Steps - # of Time Steps in Trajectories Model dt - Δt between Trajectory Time Steps

Tuned: 30Hz @ 2000, 50Hz @ 1000

Costmap Smooth Inflation Critical! (like Smac)

Sampling STD {vx, vy, wz} - Sampling Noise

In The Wild

Our Sponsors

Powered By

OPEN
NAVIGATION

Repository, Documentation, and Issue Tracker:

https://github.com/ros-planning/navigation2 https://discourse.ros.org/c/navigation https://navigation.ros.org

Interested in Getting Involved or Sponsoring? Join our Slack: https://bit.ly/3ssxidP Find out more at: https://opennav.org

Steve Macenski

Open Navigation LLC info@opennav.org

