
Fast, hierarchical, sparse

Voxel Grid

Davide Faconti, ROSCon 2023

About me

● Davide Faconti, nice to meet you!

● Robotic Architect, working at PickNik Robotics

● 20 years, doing robots of all kinds.

● Author of PlotJuggler and BehaviorTree.CPP

What is Bonxai?

A header-only, single file, C++

library

to store volumetric data

in discretized cells,

i.e. a Voxel Grid.

Created primarily to manage

3D maps and occupancy grids.

About Bonxai

Bonxai data structure is:

● Unbounded: can represent an infinite space

● Sparse: only allocates the used cells

● Fast: 10x faster than Octomap

● Hierarchical: more details in the next slides…

● Typical time complexity to access a voxel is

O(1)

About Bonxai

This slide contains a few lies.

Pay attention to the presentation, to learn more

Bonxai data structure is:

● Unbounded: can represent an infinite space

● Sparse: only allocates the used cells

● Fast: 10x faster than Octomap

● Hierarchical: more details in the next slides

● Typical time complexity to access a voxel is O(1)

Summary of the presentation, in one slide

Literature

“VDB: High-Resolution Sparse Volumes with Dynamic Topology”, presented at SIGGRAPH 2013.

“Octomap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees”, presented at ROSCon

2013

"A Sparse-Dense Approach for Efficient Grid Mapping", ICARSC 2018

How to use

it

Octrees refresher

● Subdivision of the space, where each

cube (Node) is split in 8 cubes recursively.

● The voxel size will tell us when to stop

the recursion.

● Sparse: only defined Nodes are allocated.

● Time complexity of search and update:

O(logN), where N is the number of Nodes

Potential problems with Octrees

Not cache friendly. Memory is

fragmented.

Many heap allocations, when

building the tree.

This affects negatively

insertion, searching and

iteration times.

Example, using 2 cm voxels

● Create the grid: 10x faster

● Update/Read existing cells: 6x faster

● Iterate through all cells: 10x faster

Warning! Performance will vary a lot, based on the

density of the data, but Bonxai always wins

Bonxai VS Octree
460.000 points

How Bonxai works
under the hood

Bonxai/VDB data structure

Bonxai data structure, implemented by VoxelGrid<DataType>:

● RootMap: a hashmap, where each element contains an instance of InnerGrid

● InnerGrid: a 3D grid (NxNxN) , each element contains a pointer to a LeafGrid.

● LeafGrid: a 3D grid (MxMxM), each element contains a DataType

● Grids have a bitfield mask, to check if a cell is active or not.

InnerGrid LeafGridRootMap

X

Y

Z

Voxel Coordinates (int32):

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

Given a set of coordinates, we want to find a unique instance of DataT

X

Y

Z

Voxel Coordinates (int32):

These bits are used to find a

value in the hashmap, i.e.

RootMap.

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

X

Y

Z

Voxel Coordinates (int32):

These bits are used to find the

index into the 4x4x4 InnerGrid.

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

0 1 2 3 4 5 6 7 … 29 30 31

X

Y

Z

Voxel Coordinates (int32):

These bits are used to find the

index into the 8x8x8 LeafGrid.

Spatial coherency in LIDAR and RGB-D pointclouds

Distribution of points in PointClouds is not completely “random”.

When data is generated by a RGBD camera or a LIDAR,

a point has a high probability to be close of the previous one

Spatial coherency and caching

Using a simple caching strategy, we can

avoid

calling std::unordered_map<>::find()

High probability that the

LeafGrid is the same, for two

consecutive points

Bonxai-based probabilistic mapping

Using Bonxai + Eigen,

I reimplemented the Octomap

probabilistic map algorithm,

including raycasting,

in 250 lines of code Bonxai Octomap

almost

Lie: “Bonxai is 10x faster than Octomap”

Actually, 13-19x faster on the

Kitti LIDAR odometry datasets

Lie: “Bonxai is Unbounded”

Since we use 32 bits indexes to represent the voxel coordinates, the

maximum representable space is actually limited.

Given a voxel size equal to 1

cm, the maximum size of the

grid is about 40,000 Km.

Lie: “Bonxai is Sparse”

Technically, it is a Sparse-Dense

structure, since the grid at the

bottom layers is dense.

In practice, memory overhead is

not a problem.

Lie: “this presentation is about 3D mapping”

No, this talk is about a data structure

that you can easily add to your projects

Just copy “bonxai/bonxai.hpp” into your “3rdparty” folder and enjoy your life!

https://github.com/facontidavide/Bonxai

Thank you for your attention :)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

