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Agenda

We’ll learn how to use 
trace data to improve 
performance

1. Introduction
2. Tracing
3. Instrumentation
4. Trace data analysis
5. Examples and use-cases
6. Conclusion
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Introduction

• Performance analysis
• Understand what happened during execution
• Extract high-level information
• Find cause of bugs
• Identify misconfigurations
• Optimize performance
• Extract various performance metrics
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Tracing
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• Low-level software tracing
• Fast low-level recording at runtime
• Low performance impact
• Payload is usually raw binary data
• Needs to be processed for it to be useful

• Need to instrument source code in order to collect data
• Applications
• Linux kernel (built-in)
• Drivers
• Etc.

• ros2_tracing: tracing instrumentation and tools for ROS 2
• This presentation is about trace data processing, not ros2_tracing itself

• See ROS World 2021 presentation: Tracing ROS 2 with ros2_tracing 
(vimeo.com/652633418)

• Or the paper:
ros2_tracing: Multipurpose Low-Overhead Framework for Real-Time Tracing of ROS 2
(doi.org/10.1109/LRA.2022.3174346)
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• Record low-level 
execution information

• Trace data needs to 
be processed

https://vimeo.com/652633418
https://vimeo.com/652633418
https://doi.org/10.1109/LRA.2022.3174346
https://doi.org/10.1109/LRA.2022.3174346
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Tracing is useful to understand the execution of complex systems.
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Why trace? When to trace?

• Tracing is one of many tools in our huge toolbox
• Not always the right tool

• Optimize a specific function or lines of code ➡ profiler
• Debug a specific function or lines of code ➡ debugger
• What happened at 9:27 pm? ➡ logs

• Tracing examples
• One instance is taking longer than usual: I/O, kernel scheduling, etc.
• Anomalies or unexpected behaviour with messages or system: logic bug, executor misconfiguration, etc.

• Especially useful to understand complex systems
• Like large and/or distributed systems
• Since complex systems can make debuggers less effective

• Also useful in general to visualize a system
• Might give hints to optimize your system
• Even if you’re not necessarily looking for performance issues
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Instrumentation — ros2_tracing
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• Instrumentation is built into ROS 2 by default on Linux starting from ROS 2 Iron Irwini
• Information about the main elements of ROS 2
• Objects

• Node, publisher, subscription, timer
• Events

• Callback execution (subscription, timer)
• Message publication, message taking
• Internal executor phases, etc.

• Uses the LTTng tracer for instrumentation and recording

• Information about 
callbacks and 
messages

• Now included by 
default on Linux as of 
ROS 2 Iron Irwini
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Instrumentation — Custom
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1. Define your tracepoints in a tracepoint provider (shared library)
a. Tracepoint names
b. Arguments

2. Add tracepoints to your code
3. Run your application and collect data

$  ros2 trace --ust ‘ros2:*’ ‘my_app:*’

• This is a simplified version
• For more information, see:

lttng.org/docs/v2.13/#doc-instrumenting

// tp.h: tracepoint definition in tp provider header

#include <lttng/tracepoint.h>

LTTNG_UST_TRACEPOINT_EVENT(

  my_app, my_tracepoint,

  LTTNG_UST_TP_ARGS(int, count_arg),

  LTTNG_UST_TP_FIELDS(

    lttng_ust_field_integer(int, count, count_arg))

)

// Insert tracepoint somewhere in your code

#include "tp.h"

lttng_ust_tracepoint(my_app, my_tracepoint, 42);

https://lttng.org/docs/v2.13/#doc-instrumenting
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Combine and visualize trace data from multiple sources or layers.
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Trace data analysis — How to use trace data?
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• Combining trace data from multiple sources helps understand the execution
• Multiple applications, including ROS 2 + additional application-specific info
• Linux kernel
• Distributed systems (with time synchronization)

• Examples
• ROS 2: callback executions, message publications
• Linux kernel: scheduling, I/O, system calls, etc.

• Add information specific to your own nodes
• Instrument and trace your nodes
• Can provide information about the processing performed by your nodes

• Trace processing tools
• tracetools_analysis: very basic Python API
• Eclipse Trace Compass: powerful trace viewer and analysis framework

• Trace Compass can display Linux kernel and ROS 2 trace data
• And more!
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Example
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• Viewing ROS 2 trace data with Trace Compass
• Horizontal axis is time
• Rows

• 🤖 system (1 trace/system)
• 🔲 node

• ⌛ timer
• ↘ subscription
• ↗ publisher

• Shows
• Rectangles: callback executions
• Arrows: message publications

• Autoware reference_system
• For a single end-to-end process pipeline instance 

starting from one LiDAR message
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Figure 1. Callbacks and messages over time in Trace Compass.

/EuclideanClusterEstimator
subscription callback instance
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Example (2)
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• State of executors over time
• Green: executing (callback)
• Orange: waiting for work

• 1 executor/process
• Some executors are busier than others
• Could explain message processing delays

• Message reception → callback

Figure 2. State of single-threaded executors over time.
Figure 3. State of multi-threaded and single-threaded executors over time.
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Example (3)
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Figure 4. Kernel scheduling view (control flow) vs. executor view: thread scheduling explains some executor delays.



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Example — Taking it to the next level
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• We’ve implemented a Trace Compass plugin for Apex.Grace, our fork of ROS 2
• This is somewhat specific to our custom executor

• Executor-centric view (below) vs. node-centric (previously)
• See presentation from ROS World 2021 executor workshop: Executor with wait-set and polling subscription

Figure 5. State of Apex.Grace executor and message publications over time.

https://www.apex.ai/roscon-21
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Example — Taking it to the next level (2)
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• We can see the callback executions over time
○ What if we want to know more about what happens 

in our callback?
• Custom tracepoints to provide information about 

processing done inside a function or callback
• Display durations over time

lttng_ust_tracepoint(interval_start, "camera msg", (uint64_t) id);

// Do some processing

// ...

lttng_ust_tracepoint(interval_end, "camera msg", (uint64_t) id);

Figure 6. Duration (interval_end - interval_start) values over time.
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Use-cases — Our own experience
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• Using tracing and our Trace Compass-based tool, we’ve identified and fixed multiple issues

• Executor misconfiguration
• Very visually obvious, but would’ve never guessed otherwise
• I wasn’t even looking for an issue

• Performance issue
• Could clearly see that a node couldn’t process messages fast enough: bottleneck

• Performance instability due to bad execution logic
• Would’ve been hard to find otherwise

• Execution strategy optimization for our LiDAR stack
• Compare different execution strategies both visually and using KPIs
• Make changes and optimize
• Useful for system integrators, not only for core application developers

Being able to visualize 
the execution of your 
system is very powerful, 
even if you’re not really 
looking for issues.
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Conclusion
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• Tracing can help understand the execution of an application
• Even if you’re not looking for performance issues!

• Collect trace data from multiple sources and analyze the combined data
• ROS 2 has built-in tracing instrumentation
• Eclipse Trace Compass can display ROS 2 trace data

• Could use a bit more love, though!
• Add custom application-specific instrumentation
• Implement your own Trace Compass plugin
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Thank you!

christophe.bedard@apex.ai

Links
• github.com/ros2/ros2_tracing
• tracecompass.org
• github.com/christophebedard/ros2-message-flow-analysis
• github.com/christophebedard

Relevant papers
• C. Bédard, I. Lütkebohle, and M. Dagenais, “ros2_tracing: Multipurpose Low-Overhead Framework for 

Real-Time Tracing of ROS 2,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6511–6518, 2022.
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