
© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

ROSCon 2023
Improving your application’s 
algorithms and optimizing 
performance using trace data

Christophe Bédard
October 20, 2023



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

2

Agenda

We’ll learn how to use 
trace data to improve 
performance

1. Introduction
2. Tracing
3. Instrumentation
4. Trace data analysis
5. Examples and use-cases
6. Conclusion



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Introduction

• Performance analysis
• Understand what happened during execution
• Extract high-level information
• Find cause of bugs
• Identify misconfigurations
• Optimize performance
• Extract various performance metrics



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Tracing

4

• Low-level software tracing
• Fast low-level recording at runtime
• Low performance impact
• Payload is usually raw binary data
• Needs to be processed for it to be useful

• Need to instrument source code in order to collect data
• Applications
• Linux kernel (built-in)
• Drivers
• Etc.

• ros2_tracing: tracing instrumentation and tools for ROS 2
• This presentation is about trace data processing, not ros2_tracing itself

• See ROS World 2021 presentation: Tracing ROS 2 with ros2_tracing 
(vimeo.com/652633418)

• Or the paper:
ros2_tracing: Multipurpose Low-Overhead Framework for Real-Time Tracing of ROS 2
(doi.org/10.1109/LRA.2022.3174346)

Tr
ac

in
g

• Record low-level 
execution information

• Trace data needs to 
be processed

https://vimeo.com/652633418
https://vimeo.com/652633418
https://doi.org/10.1109/LRA.2022.3174346
https://doi.org/10.1109/LRA.2022.3174346


© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Tracing is useful to understand the execution of complex systems.

5

Why trace? When to trace?

• Tracing is one of many tools in our huge toolbox
• Not always the right tool

• Optimize a specific function or lines of code ➡ profiler
• Debug a specific function or lines of code ➡ debugger
• What happened at 9:27 pm? ➡ logs

• Tracing examples
• One instance is taking longer than usual: I/O, kernel scheduling, etc.
• Anomalies or unexpected behaviour with messages or system: logic bug, executor misconfiguration, etc.

• Especially useful to understand complex systems
• Like large and/or distributed systems
• Since complex systems can make debuggers less effective

• Also useful in general to visualize a system
• Might give hints to optimize your system
• Even if you’re not necessarily looking for performance issues

Tr
ac

in
g



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Instrumentation — ros2_tracing

In
st

ru
m

en
ta

tio
n

• Instrumentation is built into ROS 2 by default on Linux starting from ROS 2 Iron Irwini
• Information about the main elements of ROS 2
• Objects

• Node, publisher, subscription, timer
• Events

• Callback execution (subscription, timer)
• Message publication, message taking
• Internal executor phases, etc.

• Uses the LTTng tracer for instrumentation and recording

• Information about 
callbacks and 
messages

• Now included by 
default on Linux as of 
ROS 2 Iron Irwini

6



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Instrumentation — Custom

In
st

ru
m

en
ta

tio
n

7

1. Define your tracepoints in a tracepoint provider (shared library)
a. Tracepoint names
b. Arguments

2. Add tracepoints to your code
3. Run your application and collect data

$  ros2 trace --ust ‘ros2:*’ ‘my_app:*’

• This is a simplified version
• For more information, see:

lttng.org/docs/v2.13/#doc-instrumenting

// tp.h: tracepoint definition in tp provider header

#include <lttng/tracepoint.h>

LTTNG_UST_TRACEPOINT_EVENT(

  my_app, my_tracepoint,

  LTTNG_UST_TP_ARGS(int, count_arg),

  LTTNG_UST_TP_FIELDS(

    lttng_ust_field_integer(int, count, count_arg))

)

// Insert tracepoint somewhere in your code

#include "tp.h"

lttng_ust_tracepoint(my_app, my_tracepoint, 42);

https://lttng.org/docs/v2.13/#doc-instrumenting


© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Combine and visualize trace data from multiple sources or layers.

8

Trace data analysis — How to use trace data?

Tr
ac

e 
an

al
ys

is

• Combining trace data from multiple sources helps understand the execution
• Multiple applications, including ROS 2 + additional application-specific info
• Linux kernel
• Distributed systems (with time synchronization)

• Examples
• ROS 2: callback executions, message publications
• Linux kernel: scheduling, I/O, system calls, etc.

• Add information specific to your own nodes
• Instrument and trace your nodes
• Can provide information about the processing performed by your nodes

• Trace processing tools
• tracetools_analysis: very basic Python API
• Eclipse Trace Compass: powerful trace viewer and analysis framework

• Trace Compass can display Linux kernel and ROS 2 trace data
• And more!



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Example

E
xa

m
pl

es

• Viewing ROS 2 trace data with Trace Compass
• Horizontal axis is time
• Rows

• 🤖 system (1 trace/system)
• 🔲 node

• ⌛ timer
• ↘ subscription
• ↗ publisher

• Shows
• Rectangles: callback executions
• Arrows: message publications

• Autoware reference_system
• For a single end-to-end process pipeline instance 

starting from one LiDAR message

9

Figure 1. Callbacks and messages over time in Trace Compass.

/EuclideanClusterEstimator
subscription callback instance



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Example (2)

E
xa

m
pl

es

10

• State of executors over time
• Green: executing (callback)
• Orange: waiting for work

• 1 executor/process
• Some executors are busier than others
• Could explain message processing delays

• Message reception → callback

Figure 2. State of single-threaded executors over time.
Figure 3. State of multi-threaded and single-threaded executors over time.



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Example (3)

E
xa

m
pl

es

11

Figure 4. Kernel scheduling view (control flow) vs. executor view: thread scheduling explains some executor delays.



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Example — Taking it to the next level

E
xa

m
pl

es

12

• We’ve implemented a Trace Compass plugin for Apex.Grace, our fork of ROS 2
• This is somewhat specific to our custom executor

• Executor-centric view (below) vs. node-centric (previously)
• See presentation from ROS World 2021 executor workshop: Executor with wait-set and polling subscription

Figure 5. State of Apex.Grace executor and message publications over time.

https://www.apex.ai/roscon-21


© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Example — Taking it to the next level (2)

E
xa

m
pl

es

13

• We can see the callback executions over time
○ What if we want to know more about what happens 

in our callback?
• Custom tracepoints to provide information about 

processing done inside a function or callback
• Display durations over time

lttng_ust_tracepoint(interval_start, "camera msg", (uint64_t) id);

// Do some processing

// ...

lttng_ust_tracepoint(interval_end, "camera msg", (uint64_t) id);

Figure 6. Duration (interval_end - interval_start) values over time.



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Use-cases — Our own experience

E
xa

m
pl

es

• Using tracing and our Trace Compass-based tool, we’ve identified and fixed multiple issues

• Executor misconfiguration
• Very visually obvious, but would’ve never guessed otherwise
• I wasn’t even looking for an issue

• Performance issue
• Could clearly see that a node couldn’t process messages fast enough: bottleneck

• Performance instability due to bad execution logic
• Would’ve been hard to find otherwise

• Execution strategy optimization for our LiDAR stack
• Compare different execution strategies both visually and using KPIs
• Make changes and optimize
• Useful for system integrators, not only for core application developers

Being able to visualize 
the execution of your 
system is very powerful, 
even if you’re not really 
looking for issues.

14



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Conclusion

C
on

cl
us

io
n

15

• Tracing can help understand the execution of an application
• Even if you’re not looking for performance issues!

• Collect trace data from multiple sources and analyze the combined data
• ROS 2 has built-in tracing instrumentation
• Eclipse Trace Compass can display ROS 2 trace data

• Could use a bit more love, though!
• Add custom application-specific instrumentation
• Implement your own Trace Compass plugin



© 2023 Apex.AI, Inc. | All rights reserved.  
Apex.AI, Apex.OS, Apex.Grace, Apex.Ida, Apex.Alan, Apex.Ray are trademarks of Apex.AI.

Thank you!

christophe.bedard@apex.ai

Links
• github.com/ros2/ros2_tracing
• tracecompass.org
• github.com/christophebedard/ros2-message-flow-analysis
• github.com/christophebedard

Relevant papers
• C. Bédard, I. Lütkebohle, and M. Dagenais, “ros2_tracing: Multipurpose Low-Overhead Framework for 

Real-Time Tracing of ROS 2,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6511–6518, 2022.
• C. Bédard, P.-Y. Lajoie, G. Beltrame, and M. Dagenais, “Message Flow Analysis with Complex Causal 

Links for Distributed ROS 2 Systems,” Robotics and Autonomous Systems, vol. 161, p. 104361, 2023.

https://github.com/ros2/ros2_tracing
https://eclipse.dev/tracecompass/
https://github.com/christophebedard/ros2-message-flow-analysis
https://github.com/christophebedard
https://doi.org/10.1109/LRA.2022.3174346
https://doi.org/10.1109/LRA.2022.3174346
https://doi.org/10.1016/j.robot.2022.104361
https://doi.org/10.1016/j.robot.2022.104361

