
FlexBE -The Flexible Behavior Engine:

Collaborative Autonomy for ROS 2

David C. Conner, PhD

Associate Professor

robotics@cnu.edu

October 2023 1

FlexBE Overview

• History and background

• Key features and design

• Related ROS packages

• Ongoing research and development

October 2023
© 2023 David C. Conner

2

Team ViGIR’s Atlas at the

2015 DARPA Robotics Challenge Finals

October 2023
© 2023 David C. Conner

3

DARPA Robotics Challenge (DRC)

• Human-robot teams

• Supervised autonomy

– Operators can inject information

– Operators can preempt behaviors

• Constrained communications

October 2023
© 2023 David C. Conner

4

Hierarchical Finite State Machines

October 2023 5
© 2023 David C. Conner

2015 DRC

Open Door Task

High-level

Behavior

HFSM acts as a

script for

supervisors/robot

“Hierarchical”

FSM states can

contain other

FSM

Compose

behaviors

within

behaviors

• Originally conceived as an extension of ROS 1 SMACH
– http://wiki.ros.org/smach

– Hierarchical Finite State Machines (HFSM)

– Python-based state implementations

• Initially developed by Philipp Schillinger
@ TU Darmstadt (Germany)

• ROS 1 open-source release in Fall 2015
– http://wiki.ros.org/flexbe

– http://github.com/FlexBE

FlexBE : The Flexible Behavior Engine

October 2023 6
© 2023 David C. Conner

http://philserver.bplaced.net/fbe/applications.php

http://wiki.ros.org/smach
http://wiki.ros.org/flexbe
http://github.com/FlexBE
http://philserver.bplaced.net/fbe/applications.php

Key Design Concepts
• Support for high-level behavior control

– Hierarchical Finite State Machines

– Natural interaction with system capabilities

– Concurrent state execution

– Adjustable/sliding autonomy levels
• Support for unsupervised fully autonomous mode

– Runtime modifiable behaviors

• Intuitive GUI

– State machine (behavior) editor

– Interactive operator/supervisor runtime interface
• Enable “Collaborative Autonomy”

October 2023
© 2023 David C. Conner

7

https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21671

https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21671

Continuing Development @ CNU

• Christopher Newport University

 Dept. of Physics, Computer Science and Engineering

– FlexBE used in “Introduction to Robotics”

• Recent releases

In collaboration with Philipp Schillinger

– Final ROS 1 Noetic release May 2023

– ROS 2 Conversion

• Initial source released summer of ’22

• Humble and Iron binaries summer ‘23

October 2023
© 2023 David C. Conner

8

https://cnu.edu
4500 students in SE VA

https://cnu.edu/

Key Features and Design

Key Features and Design

October 2023
© 2023 David C. Conner

9

FlexBE is

• Python-based

– Easy state implementation development

• NOT for high-rate control

• Desired update rate in tens of Hz

• NOT for real-time control

• NOT for verifiable safety critical systems

October 2023
© 2023 David C. Conner

10

FlexBE can

easily

interact

with such

systems
The purpose of FlexBE is high-level behavioral control systems.

FlexBE GUI : Behavior Dashboard

http://wiki.ros.org/flexbe/Tutorials and https://github.com/FlexBE/flexbe_turtlesim_demo

© 2023 David C. Conner

October 2023 11

FlexBE

allows

modifiable

“userdata”

to be passed

from state to

state

FlexBE

allows

parameters

to be

configured

at runtime

http://wiki.ros.org/flexbe/Tutorials
https://github.com/FlexBE/flexbe_turtlesim_demo

FlexBE GUI : Statemachine Editor

List of available Python

state implementations

that interact with

system capabilities

October 2023
© 2023 David C. Conner

12

http://wiki.ros.org/flexbe/Tutorials and https://github.com/FlexBE/flexbe_turtlesim_demo

http://wiki.ros.org/flexbe/Tutorials
https://github.com/FlexBE/flexbe_turtlesim_demo

FlexBE Behavior Example

October 2023
© 2023 David C. Conner

13

A state machine realizes a desired “behavior” by invoking system capabilities;

behavior state machines can be composed.

Walk to Template

Behavior

FlexBE GUI : Runtime Control

October 2023
© 2023 David C. Conner

14

http://wiki.ros.org/flexbe/Tutorials and https://github.com/FlexBE/flexbe_turtlesim_demo

Potential

outcomes

Autonomy

level

Operator can select

outcome to preempt

state and force a

transition

Current

active state

http://wiki.ros.org/flexbe/Tutorials
https://github.com/FlexBE/flexbe_turtlesim_demo

Key Design Concepts

• Sliding autonomy levels

– Low requires operator to confirm some transitions

• i.e., it blocks exit transition

– Full allows fully autonomous transitions

• Lockable states and edit on the fly

• Enable operator forced transitions

October 2023
© 2023 David C. Conner

15

FlexBE Communications

© 2023 David Conner (david.conner@cnu.edu)

Operator Control Station (OCS) Onboard Robot Software

DRC constrained communications

between robot and operator team

States share

pub/sub/action

interfaces via

“proxies”

FlexBE States and ROS 2 Actions

• States interact with system capabilities

• Commonly implement an action client interface

– Send goal on_enter

– Monitor feedback and result in execute

– Return outcome and on_exit transition on action result

October 2023
© 2023 David C. Conner

17

For example, see code for topic-, service-, and action-based state implementations at

https://github.com/FlexBE/flexbe_turtlesim_demo/tree/ros2-devel/flexbe_turtlesim_demo_flexbe_states/flexbe_turtlesim_demo_flexbe_states

https://github.com/FlexBE/flexbe_turtlesim_demo/tree/ros2-devel/flexbe_turtlesim_demo_flexbe_states/flexbe_turtlesim_demo_flexbe_states

Quick Start Demonstration

October 2023
© 2023 David C. Conner

18

https://github.com/FlexBE/flexbe_turtlesim_demo

Supported under Naval Engineering Education Consortium (NEEC) grant N00174-23-1-0018

Example quick start demonstration at https://github.com/flexbe/flexbe_turtlesim_demo

https://github.com/FlexBE/flexbe_turtlesim_demo
https://github.com/flexbe/flexbe_turtlesim_demo

Significant Upgrades @ CNU

• ROS 2 conversion

– Initial source released summer of ’22

– Refinements and cleanup in summer ‘23

– Humble and Iron binaries summer ’23

– Enhancements to concurrent states in ros2-pre-release branch

• Planned release to Iron coming soon

October 2023
© 2023 David C. Conner

19

Summer ’23 work supported under Naval Engineering Education Consortium (NEEC) grant N00174-23-1-0018

Related ROS Packages

Related ROS Packages

October 2023
© 2023 David C. Conner

20

Flexible Navigation Package

• Collaborative navigation

– Allow approval of plans or replan

– Separate global and local planners

• FlexBE state implementations

interface to Nav2 capabilities

– State implementations

– Special Nav2 compatible nodes

https://github.com/FlexBE/flexible_navigation

October 2023 21
© 2023 David C. Conner

https://ieeexplore.ieee.org/document/7925266
https://ieeexplore.ieee.org/document/9764047

https://github.com/FlexBE/flex_nav_turtlebot3_demo

ROS 1

version

shown

Allow operator to

confirm planned path

prior to execution in

low autonomy

https://github.com/FlexBE/flexible_navigation
https://ieeexplore.ieee.org/document/7925266
https://ieeexplore.ieee.org/document/9764047
https://github.com/FlexBE/flex_nav_turtlebot3_demo

Flexible Behavior Trees

• Behavior trees are popular alternative to HFSM

• In search of the “Mythical HFSMBTH” – HFSM-BT Hybrid
– from a 2017 Game Developers conference talk by Bobby Anguelov

https://www.youtube.com/watch?v=Qq_xX1JCreI&t=1159s

– Combine each method’s strengths
• BT: Reactive decisions, high-speed

• HFSM: cyclical/repetitive behaviors , collaborative autonomy

• Flexible Behavior Trees : The “Mythical HFSMBTH” with FlexBE
• The paper: https://arxiv.org/abs/2203.05389

• The code: https://github.com/FlexBE/flexible_behavior_trees

• The demo: https://github.com/FlexBE/flex_bt_turtlebot3_demo

October 2023
© 2023 David C. Conner

22

https://www.youtube.com/watch?v=Qq_xX1JCreI&t=1159s
https://arxiv.org/abs/2203.05389
https://github.com/FlexBE/flexible_behavior_trees
https://github.com/FlexBE/flex_bt_turtlebot3_demo

Flexible Manipulation

• FlexBE interface to MoveIt!

• Currently only ROS 1 (Kinetic) and Python 2

• Planning for ROS 2 conversion late 2024

– MoveIt! 2 stabilizing

– Stable ROS 2 physics-based simulations of robot arms

October 2023
© 2023 David C. Conner

23

https://github.com/CNURobotics/flexible_manipulation

https://ieeexplore.ieee.org/document/8478933

https://github.com/CNURobotics/flexible_manipulation
https://ieeexplore.ieee.org/document/8478933

Ongoing Research and Development

Ongoing Research and Development

October 2023
© 2023 David C. Conner

24

System Improvements

• Testing, demonstrations, and tutorials for packages

• FlexBE WebUI

– Improved graphics

– Simplified Python comms integration with UI

– Expect alpha pre-release January 2024

– Planned UI Advancements

• Improved operator control over concurrent states

• HFSM Synthesis and debugging tools

October 2023
© 2023 David C. Conner

25

Supported under Naval Engineering Education Consortium (NEEC) grant N00174-23-1-0018

Adjustable

arcs/labels

HFSM Synthesis in FlexBE

• Designing HFSM (or BT) is hard

– Requires significant testing and validation

• Goal: “Correct-by-construction” synthesis tools

– Specialized research in formal methods community

– Less accessible to general robotics community

October 2023
© 2023 David C. Conner

26

Prior Work with ROS 1 FlexBE

and Reactive GR1 Synthesis

System

Environment

Formal Task

Specification

Workspace

Grounding to

System Capabilities

Reactive

Synthesis
Discrete Strategy

S1S2

October 2023 27

(e.g. FlexBE state implementations)

© 2023 David C. Conner

Maniatopoulos et al., "Reactive high-

level behavior synthesis for an Atlas

humanoid robot," ICRA 2016,

https://ieeexplore.ieee.org/

document/7487613

Hayhurst and Conner, "Towards

Capability-Based Synthesis of Executable

Robot Behaviors," SoutheastCon 2018,

St. Petersburg, FL, USA, 2018, pp. 1-8,

https://ieeexplore.ieee.org/

document/8479047

(Automaton)

https://ieeexplore.ieee.org/document/7487613
https://ieeexplore.ieee.org/document/7487613
https://ieeexplore.ieee.org/document/8479047
https://ieeexplore.ieee.org/document/8479047

GR1 Synthesis Example w/ Slugs

October 2023
© 2023 David C. Conner

28

Assumptions → Guarantees

time
GR1 fragment of LTL

complexity 끫뢄 2
끫뢶

vs.

Full LTL w/ 끫뢄 2
2끫뢶

https://link.springer.com/chapter/10.1007/978-3-319-41540-6_18

“If in next step the goat and wolf are on

 the left bank, then on the next step

the farmer better be on left bank”

X(!goat & !wolf) -> X!farmer

https://link.springer.com/chapter/10.1007/978-3-319-41540-6_18

October 2023
© 2023 David C. Conner

29

Manually created state machine from SLUGS synthesisSynthesized statemachines placed in statemachine containerRealization of SLUGS synthesized automata from GR1 specsParameters defined by Mealy machine outputs

Run time execution monitor

Confirm transition in

low autonomy

Operator preempt

Switch to

Full Autonomy

Ongoing Synthesis Work in FlexBE

• Converting 2018 system into ROS 2 version

• Develop several tutorials and demonstrations

– Make synthesis more accessible to general community

• Refactor and redesign to simplify usage

• Integrate automatic discovery of system capabilities

October 2023
© 2023 David C. Conner

30

New work supported under Naval Engineering Education Consortium (NEEC) grant N00174-23-1-0018

The paper: coming Spring ’24

The code: coming Dec ‘23

The demo: coming Dec ‘23

Conclusion

• FlexBE is now available for ROS 2

• Quick start demo at

https://github.com/FlexBE/flexbe_turtlesim_demo

• Available extension packages

• Development is active and ongoing

• Active research integrating HFSM synthesis

October 2023
© 2023 David C. Conner

31

For more information
robotics@cnu.edu

https://github.com/FlexBE/flexbe_turtlesim_demo
mailto:robotics@cnu.edu

October 2023
© 2023 David C. Conner

32

FlexBE State Implementations

• Each state corresponds to a Python implementation of the

EventState class

– on_start – invoked when behavior initialized

– on_enter – invoked when state becomes active

– execute – invoked at (approximately) specified rate

– on_exit – invoked when state returns outcome

– on_stop – invoked when behavior is shutdown

– on_pause/resume – invoked when state is locked/unlocked

October 2023
© 2023 David C. Conner

33

https://github.com/FlexBE/flexbe_behavior_engine/blob/ros2-devel/flexbe_core/flexbe_core/core/event_state.py

https://github.com/FlexBE/flexbe_behavior_engine/blob/ros2-devel/flexbe_core/flexbe_core/core/event_state.py

FlexBE in Education

• Currently use in CPSC 472/572
 “Introduction to Robotics”@CNU

• FlexBE in low-autonomy acts as “script”
– “Get goal”, “Plan path”, “Execute path follower”

– Allows users to better see interaction of components

• Teach HFSM-based behavior control
– Students can write Python-based state implementations

– Use FlexBE to control high level system behaviors

– Reinforce use of object-oriented paradigm

October 2023
© 2023 David C. Conner

34

WGCF Specs (Slugs format)

October 2023
© 2023 David C. Conner

35

(wolf & move_wolf & farmer) -> (!wolf' & !farmer')

(!wolf & move_wolf & !farmer) -> (wolf' & farmer')

(corn & move_corn & farmer) -> (!corn' & !farmer')

(!corn & move_corn & !farmer) -> (corn' & farmer')

(move_empty & farmer) -> !farmer'

(move_empty & !farmer) -> farmer'

Not moving leaves the environment alone

!move_goat -> ((goat & goat') | (!goat & !goat'))

!move_wolf -> ((wolf & wolf') | (!wolf & !wolf'))

!move_corn -> ((corn & corn') | (!corn & !corn'))

[INPUT]

our farmer prefers 4 letter words not cabbages

goat

wolf

corn

farmer

[OUTPUT]

move_goat

move_wolf

move_corn

move_empty

[ENV_INIT]

Everyone on the left bank

!goat

!wolf

!corn

!farmer

[SYS_INIT]

The game solver should figure out that one thing needs

to be moved initially

[ENV_TRANS]

What occurs in environment

transitions due to move

(!goat & move_goat & !farmer) -> (goat' & farmer')

(goat & move_goat & farmer) -> (!goat' & !farmer')

WGCF Spec (continued)

October 2023
© 2023 David C. Conner

36

[SYS_TRANS]

Allowable commands from our controller

Can only move one thing at a time

!(move_goat & move_wolf)

!(move_goat & move_corn)

!(move_goat & move_empty)

!(move_corn & move_wolf)

!(move_corn & move_empty)

!(move_wolf & move_empty)

What we need our controller to enforce

Farmer must stay when goat and corn are together

(goat' & wolf') -> farmer'

(!goat' & !wolf') -> !farmer'

(goat' & corn') -> farmer'

(!goat' & !corn') -> !farmer'

Cannot move unless boat on same side

(goat & !farmer) -> !move_goat

(!goat & farmer) -> !move_goat

(wolf & !farmer) -> !move_wolf

(!wolf & farmer) -> !move_wolf

(corn & !farmer) -> !move_corn

(!corn & farmer) -> !move_corn

[ENV_LIVENESS]

Nothing

[SYS_LIVENESS]

Let's get across infinitely often

goat & wolf & corn

	FlexBE -The Flexible Behavior Engine:�Collaborative Autonomy for ROS 2
	FlexBE Overview
	Team ViGIR’s Atlas at the �2015 DARPA Robotics Challenge Finals
	DARPA Robotics Challenge (DRC)
	Hierarchical Finite State Machines
	FlexBE : The Flexible Behavior Engine
	Key Design Concepts
	Continuing Development @ CNU
	Key Features and Design
	FlexBE is
	FlexBE GUI : Behavior Dashboard
	FlexBE GUI : Statemachine Editor
	FlexBE Behavior Example
	FlexBE GUI : Runtime Control
	Key Design Concepts
	FlexBE Communications
	FlexBE States and ROS 2 Actions
	Quick Start Demonstration
	Significant Upgrades @ CNU
	Related ROS Packages
	Flexible Navigation Package
	Flexible Behavior Trees
	Flexible Manipulation
	Ongoing Research and Development
	System Improvements
	HFSM Synthesis in FlexBE
	Prior Work with ROS 1 FlexBE�and Reactive GR1 Synthesis
	GR1 Synthesis Example w/ Slugs
	Slide Number 29
	Ongoing Synthesis Work in FlexBE
	Conclusion
	Slide Number 32
	FlexBE State Implementations
	FlexBE in Education
	WGCF Specs (Slugs format)
	WGCF Spec (continued)

