
Creating scalable 
customized robotic 
platforms

Luis Camero 
Tony Baltovski 

Roni Kreinin



Agenda

● Background

● Problem Statement

● Motivation

○ Limitations

○ Unifying the Ecosystem 

● URDF-based Hardware 

● Clearpath Configuration System

● Lessons Learned and Next Steps

Clearpath Husky model in RViz, with and 

without payloads



Background

- Six robotics platforms with distinct size and form factors. 

- Over 20 different sensors and four different manipulator 

brands for customers to customize the robots.

- Each robot platform’s code base contained in a separate 
GitHub organization.

- Environment variables were introduced to add payloads to 
xacro and launch files.

- Each robot order is relatively unique, with custom hardware and 
software stored in an internal repository. 

Customized clearpath robots.



Problem Statement

- Clearpath Robotics has a wide range of robot platforms and 
accessories with which our customers can tailor to their applications. 

- As we scaled the number of robotics platforms, sensors, manipulators, 
and other robot accessories, our technical debt rapidly scaled and has 
hampered the development of tutorials for beginners, demos for users 
to extend, and developer tools for industry partners to leverage. 

- How can we restructure and reimagine our robot customization system 
to minimize technical debt, reduce integration time, and improve user 
experience?



Motivation: Limitations

- Our divided code base duplicated common elements and lead to 

asymmetric development that ultimately limited progress.

- Environment variables do not scale well.

- Instantiating payloads from environment variables requires unique variables for 

each payload.

- The more variables the longer their names and more confusing they become

- Large xacro files and launch files that become difficult to read and extend.

- These variables varied among platforms.

export HUSKY_LASER_3D_SECONDARY_ENABLED=1

export HUSKY_LASER_3D_SECONDARY_HOST='192.168.131.21'

export HUSKY_LASER_3D_SECONDARY_TOPIC='secondary_points'

Example of environment variables to setup a 3D laser on Clearpath Husky.



Motivation: Unifying the Ecosystem 

- Common plug and play software

- Simulations that are easy to extend by students 
and researchers.

- Navigation demos that work regardless of robot 
platform.

- Common API

- Standardized topics and message types for all 
robots.

- Facilitates software development across all our 
platforms.

- Common tutorials 

- Apply to all robot platforms.

- Easy to maintain and reliable for users.

Topic Message Type

sensors/lidar2d_#/scan sensor_msgs/LaserScan

sensors/lidar3d_#/points sensor_msgs/PointCloud2

sensors/lidar3d_#/scan sensor_msgs/LaserScan

sensors/camera_#/color/image sensor_msgs/Image

sensors/imu_#/data sensor_msgs/Imu

sensors/gps_#/fix sensor_msgs/NavSatFix

Clearpath API; sensor topics and their message types. 



URDF-based Hardware

- Platform Attachment Configuration System (PACSTM).

- 80x80mm grid of M5 x 0.8 threaded holes and URDF 
links that match the grid.

- Brackets that serve as an interface to attach any of 
our common sensors to the PACSTM grid.

- Repeatable robot building process.

- Enables users to upgrade and swap sensors.

- Change locations of sensors as use-case changes.

- Drawings available on the Clearpath Docs.

PACSTM husky top plate. 



URDF-based Hardware

CAD of Clearpath Husky with PACSTM system. Clearpath Dingo with PACSTM. 



Clearpath Configuration System

- Unify all Clearpath platforms under a single code base. 

- Yet another YAML; we contain the entire robot system within one 
robot.yaml file.

- Generator scripts read contents of robot.yaml file and produce all files 
required to launch all nodes. 

robot.yaml generators

platform.launch.py 

sensors.launch.py

robot.urdf.xacro

setup.bash



- Contains all information about the system, 
divided in the following sections:

- system: ROS 2 system information. Used to 
generate setup.bash

- platform: robot platform information, i.e. 
customizing controller parameters 

- links: exposes URDF primitive links to quickly add 
to the URDF. 

- mounts: mounting structures for sensors. 

- sensors: sensor description and launch 
parameters.

Clearpath Configuration YAML

Clearpath Configuration YAML sample system entries.



Intel Realsense Example:

Clearpath Configuration YAML

camera:

- model: intel_realsense

urdf_enabled: true

launch_enabled: true

parent: base_link

xyz: [0.0, 0.0, 0.0]

rpy: [0.0, 0.0, 0.0]

ros_parameters:

camera:

camera_name: camera_0

device_type: d435

serial_no: "0"

enable_color: true

rgb_camera.profile: 640,480,30

enable_depth: true

depth_module.profile: 640,480,30

pointcloud.enable: true

export HUSKY_REALSENSE_ENABLED=1

export HUSKY_REALSENSE_SERIAL='0'

export HUSKY_REALSENSE_TOPIC='realsense'

export HUSKY_REALSENSE_POINTCLOUD_ENABLED=1

export HUSKY_REALSENSE_DEPTH_ENABLED=1

export HUSKY_REALSENSE_DEPTH_FRAMERATE='30'

export HUSKY_REALSENSE_DEPTH_HEIGHT='480'

export HUSKY_REALSENSE_DEPTH_WIDTH='640'

export HUSKY_REALSENSE_COLOR_ENABLED=1

export HUSKY_REALSENSE_COLOR_FRAMERATE='30'

export HUSKY_REALSENSE_COLOR_HEIGHT='480'

export HUSKY_REALSENSE_COLOR_WIDTH='640'

export HUSKY_REALSENSE_PREFIX='camera'

export HUSKY_REALSENSE_PARENT='top_plate_link'

export HUSKY_REALSENSE_XYZ='0 0 0'

export HUSKY_REALSENSE_RPY='0 0 0'

Environment variables to setup a Realsense camera on 

a Clearpath Husky. 

Clearpath Configuration YAML sample to add an Intel 

Realsense on any robot.



Customize Robots Live

Clearpath Configuration Live; re-generating URDF model 



The picture can't be displayed.

When it comes to simulations, the robot.yaml provides all the information the 
generators require to launch a Gazebo simulation and a bridge for every sensor 
added. 

Simulate in Gazebo

Gazebo simulation generated using the Clearpath Configuration System. 



- Re-imagine building robots with ROS tools in mind 
to facilitate ROS integration. 

- Common code base of all platforms and common 
configuration systems to build better tutorials, 
demos, and API tools.

- Extend configuration tools for the generic case to 
integrate all payloads with non-Clearpath robots in 
the ecosystem. 

- Support more platforms, support every sensor, 
and add manipulators to the system. 

Lessons Learned and Next Steps

Create 3 Robot configured 

using the Clearpath 

Configuration tool.



Thank you

Any questions?

https://docs.clearpathrobotics.com/docs/robots/

https://docs.clearpathrobotics.com/docs/robots/

	Creating scalable customized robotic platforms
	Agenda
	Background
	Problem Statement
	Motivation: Limitations
	Motivation: Unifying the Ecosystem 
	URDF-based Hardware
	URDF-based Hardware 
	Clearpath Configuration System
	Clearpath Configuration YAML
	Clearpath Configuration YAML
	Customize Robots Live
	Simulate in Gazebo
	Lessons Learned and Next Steps
	Thank you

