Create® 3 Robot in the Classroom: Teaching ROS 2 to Undergraduates

Briana Bouchard & Kathryn Wujciak
Tufts University
School of Engineering
About Us

Briana Bouchard, PhD
Assistant Teaching Professor
Mechanical Engineering

Kathryn Wujciak
Master's Student
Mechanical Engineering
Agenda

1. State of ROS 2 in Undergraduate Classrooms
2. Making ROS 2 Classroom-Friendly Using Create® 3 Robot
3. What We’ve Learned
State of ROS 2 in Undergraduate Classrooms
Why should ROS 2 be introduced in the classroom?

- Not widely integrated into undergraduate curricula
- Important to prepare students for industry positions
What's keeping ROS 2 out of the undergraduate classroom?

- Requires some knowledge of intermediate computer science concepts
- Limited availability of educational resources for teaching ROS 2
- Configuration challenges within university infrastructure
Making ROS 2 Accessible: Classroom-Friendly Configurations
Using the Create® 3 Robot to Teach ROS 2

Opportunity to start in Python and advance to ROS 2

Learn and apply ROS 2 concepts using various functionalities of the robot

Hands-on activities allow for integration of multiple engineering disciplines
Classroom-friendly Configurations

Virtual Machine

JupyterLab Server

Raspberry Pi
Classroom-friendly Configurations

- Virtual Machine
- JupyterLab Server
- Raspberry Pi
JupyterLab Server

Pros
- Works on any computer
- No Linux knowledge required
- Simplified interface

Cons
- Server build out with IT support
- Instructor material prep time
JupyterLab Server

Pros
- Works on any computer
- No Linux knowledge required
- Simplified interface

Cons
- Server build out with IT support
- Instructor material prep time

Recommended for First Year Undergraduates
Raspberry Pi

Student’s Computer Wi-Fi Raspberry Pi Eth over USB Create® 3 Robot

Pros
• Reduce network traffic
• More flexibility
• Full access via SSH/VNC
• Add & control additional sensors & actuators

Cons
• Uncontrolled environment
• Instructor prep of image required
Raspberry Pi

Pros
- Reduce network traffic
- More flexibility
- Full access via SSH/VNC
- Add & control additional sensors & actuators

Cons
- Uncontrolled environment
- Instructor prep of image required

Recommended for Upper Level Undergraduates
<table>
<thead>
<tr>
<th>Week</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Basics of Python & using Python with the Create® 3 robot</td>
<td>Intro to Linux & Raspberry Pi</td>
<td>Intro to ROS 2</td>
<td>Intro to rclpy Sensors and actuators on Create® 3 robot</td>
<td>Cloud-based teleoperation obstacle course</td>
<td>Invisible Springs - proportional control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gears, linkages & actuators</td>
<td>ROS 2 via terminal</td>
<td>Create® 3 robot</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROS 2 Concept</td>
<td>Nodes & Topics</td>
<td>Subscribers & Publishers</td>
<td>Subscribers & Publishers</td>
<td>Subscribers & Publishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Week 7</td>
<td>Week 8</td>
<td>Week 9</td>
<td>Week 10</td>
<td>Week 11</td>
<td>Week 12</td>
</tr>
<tr>
<td>Topic</td>
<td>Color sensor line follower - PID control & sensor integration</td>
<td>E-stop and reset position</td>
<td>Square drive</td>
<td>Navigation Using Object Recognition</td>
<td>Mapping & Nav2</td>
<td>Custom interfaces & packages</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROS 2 Concept</td>
<td>Subscribers & Publishers</td>
<td>Services</td>
<td>Actions</td>
<td>Subscribers, Publishers & Actions</td>
<td>Parameters & Launch Files</td>
<td>Messages, Services & Actions</td>
</tr>
</tbody>
</table>
What We've Learned
Challenges

- Network connectivity & interfacing with campus IT
- Fostering an environment where “experienced coders” and “non-experienced coders” feel equal
- Facilitating students in understanding complex concepts
Successes

- Project-based learning through hands-on activities
- Opportunity to combine multiple engineering disciplines in projects
- Collaborative environment
Key Takeaways
Acknowledgments
THANK YOU

Briana Bouchard
Briana.bouchard@tufts.edu

Kathryn Wujciak
Kathryn.wujciak@tufts.edu
20% off the iRobot® Create® 3 robot and its accessories

code: TUFTS-ROSCon-23

Offer code valid through November 3, 2023 on edu.irobot.com/shop and code must be entered at checkout. Cannot be applied to previous purchases or combined with any other offer. Not redeemable for cash or credit.