

Chris Timperley, October 19th, 2023

Robustness Testing

Ability to test systems under rare, off-nominal, extreme conditions

Environmental

Software

Hardware

When things break down and assumptions are violated, the system must continue to be safe!

Robustness Testing at NREC EXPERIENCE EXPERI

Tested dozens of government and commercial systems since 2011

Robustness Testing at NREC STREET EXPERIENCE - EXPERIENCE

Built a suite of robustness tools that target different interfaces

Robustness Testing at NREC PROBLET STATES OF THE PROBLEM OF THE PR

Found and helped to fix bugs in over 30 systems that were tested

In Simulation

Message on /joy topic causes self-intersection

In Hardware

Spurious speed command causes speed limit violation

In The Wild

test value caused selfintersection

months later, failure occurred on physical robot and caused irreparable damage

With Human Harm

Spurious joint angle causes invalid state and stops safety system from functioning

SAE J1939

Robustness Testing at NREC EXPERIENCE EXPERI

But almost all of this work was done under restricted funding

MOBSTA: Robustness Testing for ROS

Early Research Release

Example System: TurtleBot

Automatic Lidar Parking

MoBSTA: Robustness Testing for ROS

Three Ingredients for Robustness Testing

Nominal Data

Invariants

Mutations

Nominal Field Data Collection

- Setup an enclosed rectangular environment for the robot
- We vary the position of the the reflective tape, used to indicate the parking spot
- We vary the starting position of the robot
- Collected a total of 10 log files

Invariants

Valid Cmd Vel

invariant_name: ValidNumbersInvariant

invariant_params:

velocity_topic: /cmd_vel

Command Timing

invariant_name: CorrectCommandsInvariant

invariant_params:

velocity_topic: /cmd_vel

joint_states_topic: /joint_states

bad_command_limit: 10

angle_goal_deg: 5

position_goal: 0.05

distance_goal: 0.5

angle_uncertainty_deg: 3

position_uncertainty: 0.2

parking_spot_x_1: -1.25

parking_spot_y_1: -0.623

parking_spot_x_2: -0.825

parking_spot_y_2: -0.754

MoBSTA supports a wider set of invariants

Node Crashes

Turning Radius

Mutation: Lidar Intensities

```
mutation-config:
topics:
 /scan:
  - message intercept: /intensities
   mutations:
    - mutation type: Float32Array AddToWholeArrayMutator
     mutation chance: 1
     timeframe_begin: 0
     timeframe_end: -1
     mutation_args:
      valueToAdd: -100
     minArrayValue: 0
      maxArrayValue: 255
      arraySize: 259
```

sensor_msgs/LaserScan

std_msgs/Header header float32 angle_min float32 angle_max float32 angle_increment float32 time_increment float32 scan_time float32 range_min float32 range_max float32[] ranges

float32[] intensities

We support other realistic perturbations

Sensor inputs, control and planning data, configuration

NavSatStatus status	STATUS_SBAS_FIX SERVICE_GPS
Float64 latitude	40°28'31.8" N
Float64 longitude	NaN° W

Field Mutation

Message Loss and Delay

Camera Parameters

Algorithm Parameters

End-to-End Overview

Mutation exposes brittle lidar intensity handling

Mutation exposes brittle lidar intensity handling

```
intensity_threshold = 100
...

for i in range(len(msg.intensities)):
    spot_intensity = msg.intensities[i] ** 2 * msg.ranges[i] / 100
...

if spot_intensity >= intensity_threshold:
...
```

What's Next?

Closed-Loop Robustness Testing via Enhanced Simulation

AutoMOBSTA

Efficient Search

Mature Tooling + Workflow Integration

Breaking Bots: Robustness Testing for ROS

We want to hear your thoughts! Do you do robustness testing?

MoBSTA