Bidirectional navigation with Nav2

Guillaume Doisy - Lead System Architect guillaume@dexory.com ROSCon 2023 - 19/10/2023

- How ?

- Method A: Inversion trick

- Method B: Full Nav2 way

Guillaume Doisy - Lead System Architect guillaume@dexory.com

ROSCon 2023 - 19/10/2023

Bidirectionality: why?

- Staying agile without having a circular footprint. In other words, dealing with dead ends.
- Advantages of rectangular over circular robots:
 - o Easier to manufacture
 - Better longitudinal stability (castor wheels can be placed further away from driving wheels)
 - Better threshold crossing capability
 - For the same width, can carry a much bigger payload
- Drawbacks : needs to be fully bidirectional, hence
 - Needs navigation sensor symmetry
 - O Navigation software is more complex...

How? Method A: Inversion trick

- Inversion trick on the planner and the controller
- Advantages :
 - Transparent from the point of view of the navigation software
 - Works with old architectures
 - Simple planner: no orientation computation
- Drawbacks :
 - Hacky
 - Assumes symmetricity of the payload (same capabilities on both sides)

How ? Method A: Inversion trick

Example: Wyca Robotics Elena/Astrid:

- First implemented in ROS 1 + move_base_flex + BT, then ROS 2
- Logistics warehouse inventorying application
- Symmetric payload: cameras left and right

Direction agnostic everywhere:

- o Planner: SmacHybrid
- o Controller: MPPI
- Twist pipeline (Smoother, Muxer, Collision Monitor)

Planner: SmacHybrid

- o Support non-circular robots: can perform polygonal collision checks, i.e. not only circumscribed radius
- o Plan with orientation
- o Opportunistic inversion with a priori knowledge
- o Loop inversion

Planner: SmacHybrid

Example:

o Start: Forward

o Goal: Forward

=> Classic path

Planner: SmacHybrid

Example:

Start: Backward

o Goal: Backward

=> Similar path, but inverted as Start: Forward / Goal: Forward

Planner: SmacHybrid

Example:

- Start: Forward
- o Goal: Backward
- => Opportunistic inversion, while it is possible and in anticipation of the final pose

Planner: SmacHybrid

Example:

Start: Backward

o Goal: Forward

=> Opportunistic inversion, while it is possible and in anticipation of the final pose. Start: Backward /

Planner: **SmacHybrid**

Example: Loop path supported!

Controller: MPPI

Ability to respect the path orientation, provided an appropriate planner is used, and with the parameter **PathAngleCritic.mode: 2**

Controller: MPPI

- Ability to respect path inversions (i.e. don't shortcut an inversion computed by the planner) with the parameter enforce_path_inversion
- Inversion pose is temporary considered as the goal of the controller

Bidirectional ready twist pipeline, including the velocity smoother

Bidirectional ready twist pipeline, including the velocity smoother

EXO

Robots using

Thanks!

Guillaume Doisy - Lead System Architect guillaume@dexory.com ROSCon 2023 - 19/10/2023

DEXORY