
1

Jacob Hartzer

An Integrated Modeling and Testing

Architecture for ROS Nodes

ROSCon 2023

Integrated Modeling and Testing of ROS Nodes 2

Unmanned Systems Lab

• On/Off Road Autonomy

• LIDAR and RADAR Odometry and Perception

• Multi-Sensor Fusion and Calibration

Integrated Modeling and Testing of ROS Nodes 3

Our Work - Calibration

• Utilize a wide variety of sensors and environments

• RTK GPS in highway applications

• Ultra-Wideband for cooperative localization and detection

• Multi-IMU, Multi-Camera fusion

Integrated Modeling and Testing of ROS Nodes 4

The Challenge of Calibration

• Sensors do not work well when uncalibrated

• Ideally would like to calibrate sensors online

• Re-calibrating on the fly is more robust

• Proving stability and consistency is hard

• Sensor flexibility makes it even harder

Must test many, many

datasets and environments

Integrated Modeling and Testing of ROS Nodes 5

EKF-CAL Package

• EKF-CAL is flexible MSCKF-based sensor calibration package

• Inputs are YAML based and compatible with ROS 2 parameter declarations

• Inherently multi-sensor (IMU, Camera, and GPS soon)

• Developed with integrated testing and Monte Carlo simulation in mind

• Open Source!

Integrated Modeling and Testing of ROS Nodes 6

Typical Development

Develop Algorithm in

scripted language

 (MatLab, Julia, etc.)

Deploy code in

compiled language

(C++, Rust, etc.)

Find a bug / invalid assumptions

Need performance / Real-Time

Integrated Modeling and Testing of ROS Nodes 7

True DeploymentLow-Fidelity Simulation

Typical Development

Low-Fidelity

Measurements
Preprocessors

Sensor Interfaces

True

Measurements

Simulated Algorithm Main Algorithm

Integrated Modeling and Testing of ROS Nodes 8

True DeploymentLow-Fidelity Simulation

Typical Development

Low-Fidelity

Measurements
Preprocessors

Sensor Interfaces

True

Measurements

Simulated Algorithm Main Algorithm

Integrated Modeling and Testing of ROS Nodes 9

True DeploymentLow-Fidelity Simulation

Typical Development

Low-Fidelity

Measurements
Preprocessors

Sensor Interfaces

True

Measurements

Simulated Algorithm Main Algorithm

High-Fidelity Simulation

High-Fidelity

Measurements

Simulated Algorithm

Preprocessors

Integrated Modeling and Testing of ROS Nodes 10

High-Fidelity Simulation True DeploymentLow-Fidelity Simulation

Typical Development

Low-Fidelity

Measurements
Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Simulated Algorithm Main AlgorithmSimulated Algorithm

Preprocessors

Integrated Modeling and Testing of ROS Nodes 11

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Integrated Modeling and Testing of ROS Nodes 12

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Integrated Modeling and Testing of ROS Nodes 13

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Functionally Identical

Integrated Modeling and Testing of ROS Nodes 14

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

 Issues:

 Very iterative development

 Time-intensive and tedious work

 Consistent work to maintain simulation

Functionally Identical

Integrated Modeling and Testing of ROS Nodes 15

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Integrated Modeling and Testing of ROS Nodes 16

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Integrated Modeling and Testing of ROS Nodes 17

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Low-Fidelity Simulation

Low-Fidelity

Measurements

Simulated Algorithm

Integrated Modeling and Testing of ROS Nodes 18

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Low-Fidelity Simulation

Low-Fidelity

Measurements

Simulated Algorithm

Three Code Bases

Integrated Modeling and Testing of ROS Nodes 19

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Low-Fidelity Simulation

Low-Fidelity

Measurements

Simulated Algorithm
Result:

 Complex simulations lead to fragmented code

 Fragmented code is expensive to maintain

 Multiple simulations leads to:

 Uncaught bugs

 Untested deployment code

Three Code Bases

Integrated Modeling and Testing of ROS Nodes 20

High-Fidelity Simulation True Deployment

Typical Development

Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Main AlgorithmSimulated Algorithm

Preprocessors

Low-Fidelity Simulation

Low-Fidelity

Measurements

Simulated Algorithm

Integrated Modeling and Testing of ROS Nodes 21

High-Fidelity Simulation True DeploymentLow-Fidelity Simulation

Proposed Solution

Low-Fidelity

Measurements
Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Algorithm

Integrated Modeling and Testing of ROS Nodes 22

High-Fidelity Simulation True DeploymentLow-Fidelity Simulation

Proposed Solution

Low-Fidelity

Measurements
Preprocessors

High-Fidelity

Measurements
Sensor Interfaces

True

Measurements

Algorithm

Abstraction Layers!

Interface Abstraction

Measurement Processor Abstraction

Hardware Abstraction

Integrated Modeling and Testing of ROS Nodes 23

Cost of Integrated Coding

Higher initial cost

Pays off in long-run

Integrated Modeling and Testing of ROS Nodes 24

Abstraction - Example

• Sensors call updates to filter / algorithm

 Utilize real or simulated sensor messages

• Feature tracker utilizes camera measurements

 True deployment utilizes true camera measurements

 High-Fidelity simulation provides ray-traced images

 Low-Fidelity simulation provides “pre-tracked features”

Integrated Modeling and Testing of ROS Nodes 25

Abstraction - Example

PredictFilter();

UpdateMSCKF();

ekf.cpp

GenerateTracks();

SimFeatureTracker.cpp

TrackFeatures();

FeatureTracker.cpp

GenerateImages();

SimCamera.cpp

ReadImages();

Camera.cpp

GetState(double time);

TruthEngine.cpp

Integrated Modeling and Testing of ROS Nodes 26

Abstraction - Example

PredictFilter();

UpdateMSCKF();

ekf.cpp

GenerateTracks();

SimFeatureTracker.cpp

TrackFeatures();

FeatureTracker.cpp

GenerateImages();

SimCamera.cpp

ReadImages();

Camera.cpp

GetState(double time);

TruthEngine.cpp

True Hardware

Integrated Modeling and Testing of ROS Nodes 27

Abstraction - Example

PredictFilter();

UpdateMSCKF();

ekf.cpp

GenerateTracks();

SimFeatureTracker.cpp

TrackFeatures();

FeatureTracker.cpp

GenerateImages();

SimCamera.cpp

ReadImages();

Camera.cpp

GetState(double time);

TruthEngine.cpp

Hardware Abstraction

Integrated Modeling and Testing of ROS Nodes 28

Abstraction - Example

PredictFilter();

UpdateMSCKF();

ekf.cpp

GenerateTracks();

SimFeatureTracker.cpp

TrackFeatures();

FeatureTracker.cpp

GenerateImages();

SimCamera.cpp

ReadImages();

Camera.cpp

GetState(double time);

TruthEngine.cpp

Processor Abstraction

Integrated Modeling and Testing of ROS Nodes 29

Abstraction Models: IMU

Integrated Modeling and Testing of ROS Nodes 30

Abstraction Models: Camera

Integrated Modeling and Testing of ROS Nodes 31

Abstraction - Benefits

• Improves accuracy of simulation

• Catches more bugs earlier

• Reduces rework (no code divergence)

• More beneficial unit testing

• Robust Monte Carlo testing

Integrated Modeling and Testing of ROS Nodes 32

Unit Testing

• This architecture allows test-driven development

• Any tweaks or examples can become tests

• Tests ensure code accuracy and functionality

• Can be automated per commit / merge request

CMakeGoogleTest Colcon lcov+ + +

Integrated Modeling and Testing of ROS Nodes 33

Unit Testing Nodes

main.cpp

• Ideally, we should test as much as possible

• To unit test ROS nodes, we split the node

into a entrypoint and node class

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

int main();

Node::Node();

Integrated Modeling and Testing of ROS Nodes 34

Unit Testing Nodes

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

test.cpp

TEST_F(ExampleNode, ExampleNode_test)

{

 ExampleNode node;

 node.Initialize();

 node.DeclareParameters();

 node.set_parameter(rclcpp::Parameter(“param1”));

 node.set_parameter(rclcpp::Parameter(“param2”));

 node.LoadParameters();

}

Integrated Modeling and Testing of ROS Nodes 35

Unit Testing Nodes

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

test.cpp

TEST_F(ExampleNode, ExampleNode_test)

{

 ExampleNode node;

 node.Initialize();

 node.DeclareParameters();

 node.set_parameter(rclcpp::Parameter(“param1”));

 node.set_parameter(rclcpp::Parameter(“param2”));

 node.LoadParameters();

}

Integrated Modeling and Testing of ROS Nodes 36

Unit Testing Nodes

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

test.cpp

TEST_F(ExampleNode, ExampleNode_test)

{

 ExampleNode node;

 node.Initialize();

 node.DeclareParameters();

 node.set_parameter(rclcpp::Parameter(“param1”));

 node.set_parameter(rclcpp::Parameter(“param2”));

 node.LoadParameters();

}

Integrated Modeling and Testing of ROS Nodes 37

Unit Testing Nodes

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

test.cpp

TEST_F(ExampleNode, ExampleNode_test)

{

 ExampleNode node;

 node.Initialize();

 node.DeclareParameters();

 node.set_parameter(rclcpp::Parameter(“param1”));

 node.set_parameter(rclcpp::Parameter(“param2”));

 node.LoadParameters();

}

Integrated Modeling and Testing of ROS Nodes 38

Unit Testing Nodes

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

test.cpp

TEST_F(ExampleNode, ExampleNode_test)

{

 ExampleNode node;

 node.Initialize();

 node.DeclareParameters();

 node.set_parameter(rclcpp::Parameter(“param1”));

 node.set_parameter(rclcpp::Parameter(“param2”));

 node.LoadParameters();

}

Integrated Modeling and Testing of ROS Nodes 39

Unit Testing Nodes

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

test.cpp

TEST_F(ExampleNode, ExampleNode_test)

{

 ExampleNode node;

 node.Initialize();

 node.DeclareParameters();

 node.set_parameter(rclcpp::Parameter(“param1”));

 node.set_parameter(rclcpp::Parameter(“param2”));

 node.LoadParameters();

}

Integrated Modeling and Testing of ROS Nodes 40

Monte Carlo Testing

• With fast enough simulations, we can run thousands of example datasets

• Random initialization and measurement errors are inserted

• Utilizing abstractions increases confidence of filter stability

z

Integrated Modeling and Testing of ROS Nodes 41

Key Takeaways

• Stop developing simulations separate from deployments

• Utilize existing models for integrated simulations

• Abstract layers as low as possible

• Utilize multiple layers of abstraction for various fidelity / execution speed

• Try out EKF-CAL! We love feedback and collaboration!

Integrated Modeling and Testing of ROS Nodes 42

Presentation References

1. J. Hartzer and S. Saripalli, " Online Multi Camera-IMU Calibration", IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR), 2022. IEEE, arXiv

2. P. Jiang and S. Saripalli, "LiDARNet: A Boundary-Aware Domain Adaptation Model for Point

Cloud Semantic Segmentation," 2021 IEEE International Conference on Robotics and

Automation (ICRA), Xi'an, China, 2021, pp. 2457-2464, IEEE

3. Experimental Evaluation of 3D-LIDAR Camera Extrinsic Calibration, S. Mishra, P. Osteen,

G. Pandey and S. Saripalli, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS, 2020), arXiv

4. Extrinsic Calibration of a 3D-LIDAR and a Camera, S. Mishra, G. Pandey and S. Saripalli,

IEEE Intelligent Vehicles Symposium (IV, 2020) arXiv

5. Chustz, G., & Saripalli, S. (2021). ROOAD: RELLIS Off-road Odometry Analysis Dataset.

arXIv

https://doi.org/10.1109/SSRR56537.2022.10018692
https://arxiv.org/abs/2209.13821
https://ieeexplore.ieee.org/document/9561255
https://arxiv.org/abs/2007.01959
https://arxiv.org/abs/2003.01213
http://arxiv.org/abs/2109.08228

Integrated Modeling and Testing of ROS Nodes 43

Questions?

43

EKF-CAL Repository Unmanned Systems Lab

https://www.unmannedlab.org/ekf-cal/
http://www.unmannedlab.org/

44

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

