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Unmanned Systems Lab

• On/Off Road Autonomy

• LIDAR and RADAR Odometry and Perception

• Multi-Sensor Fusion and Calibration
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Our Work - Calibration

• Utilize a wide variety of sensors and environments

• RTK GPS in highway applications

• Ultra-Wideband for cooperative localization and detection

• Multi-IMU, Multi-Camera fusion
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The Challenge of Calibration

• Sensors do not work well when uncalibrated

• Ideally would like to calibrate sensors online

• Re-calibrating on the fly is more robust

• Proving stability and consistency is hard

• Sensor flexibility makes it even harder

Must test many, many 

datasets and environments
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EKF-CAL Package

• EKF-CAL is flexible MSCKF-based sensor calibration package

• Inputs are YAML based and compatible with ROS 2 parameter declarations

• Inherently multi-sensor (IMU, Camera, and GPS soon)

• Developed with integrated testing and Monte Carlo simulation in mind

• Open Source!
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Typical Development

Develop Algorithm in 

scripted language 

 (MatLab, Julia, etc.)

Deploy code in 

compiled language 

(C++, Rust, etc.)

Find a bug / invalid assumptions

Need performance / Real-Time
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 Issues:

  Very iterative development

  Time-intensive and tedious work

  Consistent work to maintain simulation

Functionally Identical
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Result:

  Complex simulations lead to fragmented code

  Fragmented code is expensive to maintain

  Multiple simulations leads to:

  Uncaught bugs

  Untested deployment code

Three Code Bases
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Abstraction Layers!

Interface Abstraction

Measurement Processor Abstraction

Hardware Abstraction
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Cost of Integrated Coding

Higher initial cost

Pays off in long-run
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Abstraction - Example

• Sensors call updates to filter / algorithm

     Utilize real or simulated sensor messages 

• Feature tracker utilizes camera measurements

     True deployment utilizes true camera measurements

     High-Fidelity simulation provides ray-traced images

     Low-Fidelity simulation provides “pre-tracked features”
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Abstraction - Example

PredictFilter();

UpdateMSCKF();

ekf.cpp

GenerateTracks();

SimFeatureTracker.cpp

TrackFeatures();

FeatureTracker.cpp

GenerateImages();

SimCamera.cpp

ReadImages();

Camera.cpp

GetState(double time);

TruthEngine.cpp
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Abstraction Models: IMU
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Abstraction Models: Camera
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Abstraction - Benefits

• Improves accuracy of simulation

• Catches more bugs earlier

• Reduces rework (no code divergence)

• More beneficial unit testing

• Robust Monte Carlo testing
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Unit Testing

• This architecture allows test-driven development

• Any tweaks or examples can become tests

• Tests ensure code accuracy and functionality

• Can be automated per commit / merge request

CMakeGoogleTest Colcon lcov+ + +
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Unit Testing Nodes

main.cpp

• Ideally, we should test as much as possible

• To unit test ROS nodes, we split the node 

into a entrypoint and node class

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

int main();

Node::Node();
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Unit Testing Nodes

Initialize();

DeclareParameters();

LoadParameters();

node.cpp

entrypoint.cpp

int main();

test.cpp

TEST_F(ExampleNode, ExampleNode_test)

{

  ExampleNode node;

  node.Initialize();

  node.DeclareParameters();

  node.set_parameter(rclcpp::Parameter(“param1”));

  node.set_parameter(rclcpp::Parameter(“param2”));

  node.LoadParameters();

}
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Monte Carlo Testing

• With fast enough simulations, we can run thousands of example datasets

• Random initialization and measurement errors are inserted

• Utilizing abstractions increases confidence of filter stability

z
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Key Takeaways

• Stop developing simulations separate from deployments

• Utilize existing models for integrated simulations

• Abstract layers as low as possible

• Utilize multiple layers of abstraction for various fidelity / execution speed

• Try out EKF-CAL! We love feedback and collaboration!
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Questions?

43

EKF-CAL Repository Unmanned Systems Lab

https://www.unmannedlab.org/ekf-cal/
http://www.unmannedlab.org/
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