Aerostack2

The ROS 2 aerial robotics framework

Miguel Fernandez-Cortizas
20/10/2023 ROSCON’23 New Orleans
What is Aerostack2?

Aerostack2 is an open-source software framework that helps developers design and build multirobot aerial robotic systems. It is designed with ROS 2 and its part of their ecosystem.

It is an evolution of the former Aerostack framework developed and used succesfully in the CVAR Group since 2016.

What is our mission?

Ease the development of **autonomous** aerial robot systems

Develop a suitable framework for **academic** and **industrial** applications

Create ROS 2 community that enhances the development of a **common framework**
Which were our requirements?

1. Modularity and flexibility
2. Support a variety of platforms
3. Handle multiple drones
4. Easy to create new missions
5. Allows a safe system development
6. Support indoor & outdoor flights operations
Aerostack2 architecture
• Platform agnostic
• Easy Sim 2 Real deployment
• Heterogeneous swarms
• Standardized sensor
 Communication in ROS 2
Supported platforms

- Bitcraze Crazyflie 2.X
- Ryze Tello
- DJI Matrice 200/300 series
- PX4 based platforms
- Gazebo [1]
- Flightmare [2]

Basic robotic functions

A collection of software components that perform **fundamental robotic functions** in aerial robotics:

1. Motion controller
2. State estimator

They are designed to be general and reusable with alternative algorithms (**Plugins**).
Motion controller

- Load multiples plugins and select the output of one
- Satisfy the motion command requirements constrained by the platform available control modes
- Adapt frames of references and output commands
State estimator

- Select the plugin using the sensor input data available to generate "map" and "odom" localization
- Use ground truth data or GPS origin to generate "earth" localization
- Manage a common origin with other agents

https://www.ros.org/reps/rep-0105.html
Behaviors

- Each behavior corresponds to a specific robot skill related
- Each behavior encapsulates the control and execution monitoring of its task
- They are implemented extending ROS 2 actions to provide additional capabilities
Plan execution control

- Orchestrates and monitorizes the activation and deactivation of the different behaviors
- Different ways:
 - AS2 Python API
 - Behavior Trees [3]
 - AS2 Mission plan interpreter
- Depending on the application a Local Planner can be designed for modifying the plan

```python
import rclpy
from as2_python_api.drone_interface import DroneInterface
rclpy.init()
DroneInterface

drone.init()

drone.takeoff(height=1.0, speed=0.5)
drone.go_to.go_to_point([1.0, 1.0, 2.0], speed=0.5, frame_id="earth")
drone.land(speed=0.5)

drone.shutdown()

rclpy.shutdown()
```

[3] https://github.com/BehaviorTree/BehaviorTree.CPP
Different ways for generating a plan:

- Use of Web GUI (for outdoor missions)
- Design of a specific mission planner
- Defined by the user manually
Web GUI

Mission Planning

UAVs Monitoring

Mission Parameters
Multi-robot PV plant inspection
Multi-robot PV plant inspection
Mission planning example

Mission Specification

```json
{
    "blade_length": 15.0,
    "inspection_distance": 10.0,
    "vertical_overlap": 0.2,
    "inspection_angles": [0],
    "security_height": 10.0,
    "security_distance": 10.0
}
```

Mission Plan

```json
{
  "target": "drone0",
  "plan": [
    {
      "behavior": "takeoff",
      "args": { "height": 1.0, "speed": 0.5 },
    },
    {
      "behavior": "go_to",
      "args": { ":_x": 0.0,"_y": 0.0,"_z": 20.0,"frame_id": "earth" },
    },
    {
      "behavior": "go_to",
      "args": { ":_x": 10.0,"_y": 0.0,"_z": 0.0,"frame_id": "wind_turbine" },
    },
    {
      "behavior": "follow_reference",
      "args": { ":_x": 10.0,"_y": 0.0,"_z": 0.0,"frame_id": "wind_turbine" },
    },
    {
      "behavior": "follow_reference",
      "args": { ":_x": 10.0,"_y": 0.0,"_z": 2.26,"frame_id": "wind_turbine" },
    },
    {
      "behavior": "go_to",
      "args": { ":_x": 0.0,"_y": 0.0,"_z": 20.0,"frame_id": "earth" },
    },
    {
      "behavior": "land",
      "args": { "speed": 0.5 }
    }
  ]
}
```
Windmill inspection

Simulation inspection

Augmented reality inspection
Multi-robot robust area coverage
How to get started?

- Aerostack2 can be used at different levels depending on the user needs
Launching AS2

$ ros2 launch as2_platform_ign_gazebo ign_gazebo_launch.py
 namespace:=cf1
 use_sim_time:=true

$ ros2 launch as2_state_estimator state_estimator_launch.py
 namespace:=cf1
 use_sim_time:=true
 plugin_name:=ground_truth

$ ros2 launch as2_motion_controller controller_launch.py
 namespace:=cf1
 use_sim_time:=true
 plugin_name:=pid_speed_controller

$ ros2 launch as2_behaviors_motion motion.behaviors_launch.py
 namespace:=cf1
 use_sim_time:=true
 follow_path_plugin_name:=follow_path_plugin_position
 go_to_plugin_name:=go_to_plugin_position
 takeoff_plugin_name:=takeoff_plugin_position
 land_plugin_name:=land_plugin_speed

$ python3 mission.py
$ ros2 launch as2_platform_crazyflie crazyflie_swarm_launch.py
 swarm_config_file:=swarm_config_file.yaml

$ ros2 launch as2_state_estimator state_estimator_launch.py
 namespace:=cf1
 use_sim_time:=false
 plugin_name:=mocap_pose

$ ros2 launch as2_motion_controller controller_launch.py
 namespace:=cf1
 use_sim_time:=false
 plugin_name:=pid_speed_controller

$ ros2 launch as2_behaviors_motion motion_behaviors_launch.py
 namespace:=cf1
 use_sim_time:=false
 follow_path_plugin_name:=follow_path_plugin_position
 go_to_plugin_name:=go_to_plugin_position
 takeoff_plugin_name:=takeoff_plugin_position
 land_plugin_name:=land_plugin_speed

$ python3 mission.py

Changes:
1. Select Aerial Platform node
2. Disable use_sim_time
3. Change estimation plugin

swarm_config_file.yaml
--

cf1:
 uri: radio://0/80/2M/E7E7E7E701
Running the experiments

Simulation

Real
Further resources

• Documentation: https://aerostack2.github.io/

• Github: https://github.com/aerostack2/aerostack2/

Our team

Main contributors:
- Miguel Fernandez-Cortizas
- Martin Molina
- Pedro Arias-Perez
- Rafael Perez-Segui
- David Perez-Saura
- Javier Melero-Deza
- Pascual Campoy

Funding:
Thanks for your attention!!!

Aerostack2