A ROS 2 Package for Online Cobots Impedance Modulation

Liana Bertoni1,2, Luca Muratore1, and Nikos Tsagarakis1

1 Humanoids and Human Centered Mechatronics (HHCM), Istituto Italiano di Tecnologia, Genova, Italy
2 Dipartimento di Ingegneria Informatica (DII), University of Pisa, Pisa, Italy
Flexibility Adaptability
At this purpose:

we propose a **ROS2 package** aimed to unlock **flexibility** and **adaptability** of robot behaviors and interactions by exploiting a **variable impedance modulation** targeting **human-robot applications**.
Principle behind
Drilling Task

Robot impedance is **online** modulated based on
- task trajectory
- task force
- task precision
Task to Execute

- Drilling
- Pushing
- Assistance

- Task trajectory
- Task force
- Task precision
Task to Execute

ROS2 Package Inputs
- Task trajectory
- Task force
- Task precision

ROS2 Package Outputs
- stiffness
- damping

Variable Impedance Modulation

Robot Control

assistance

drilling

pushing
How to use the package
By using ROS2 topics!
0. Configuration

Variable Impedance Modulation

Node_Settings.yaml

stiffness_preset
stiffness_constant
stiffness_maximum
damping_preset
damping_maximum
robot_initial_config
wrench_initial
precision_initial
transition_time
robot_urdf_model_path
robot_base_frame_name
robot_tip_frame_name
topic_subscriber_name
topic_publisher_name
rate
log_path
verbose
0. Configuration

Variable Impedance Modulation

Node_Settings.yaml

stiffness_preset
stiffness_constant
stiffness_maximum
damping_preset
damping_maximum
robot_initial_config
wrench_initial
precision_initial
transition_time
robot_urdf_model_path
robot_base_frame_name
robot_tip_frame_name
topic_subscriber_name
topic_publisher_name
rate
log_path
verbose

Params
Node_Settings.yaml

stiffness_preset
stiffness_constant
stiffness_maximum
damping_preset
damping_maximum
robot_initial_config
wrench_initial
precision_initial
transition_time
robot_urdf_model_path
robot_base_frame_name
robot_tip_frame_name
topic_subscriber_name
topic_publisher_name
rate
log_path
verbose

0. Configuration

Variable Impedance Modulation

Params
0. Configuration

Variable

Impedance Modulation

Node_Settings.yaml

```yaml
stiffness_preset
stiffness_constant
stiffness_maximum
damping_preset
damping_maximum
robot_initial_config
wrench_initial
precision_initial
transition_time
robot_urdf_model_path
robot_base_frame_name
robot_tip_frame_name
topic_subscriber_name
topic_publisher_name
rate
log_path
verbose
```

Params

ROS2
Node_Settings.yaml

- stiffness_preset
- stiffness_constant
- stiffness_maximum
- damping_preset
- damping_maximum
- robot_initial_config
- wrench_initial
- precision_initial
- transition_time
- robot_urdf_model_path
- robot_base_frame_name
- robot_tip_frame_name
- topic_subscriber_name
- topic_publisher_name
- rate
- log_path
- verbose

0. Configuration

Variable Impedance Modulation

Params
0. Configuration

Variable Impedance Modulation

Node_Settings.yaml

- stiffness_preset
- stiffness_constant
- stiffness_maximum
- damping_preset
- damping_maximum
- robot_initial_config
- wrench_initial
- precision_initial
- transition_time
- robot_urdf_model_path
- robot_base_frame_name
- robot_tip_frame_name
- topic_subscriber_name
- topic_publisher_name
- rate
- log_path
- verbose
1. Publish inputs

bool cartesian_space
float64[] joints_position
float64[] joints_position_reference
float64[] task_pose_reference
float64[] task_wrench
float64[] task_precision

Variable Impedance Modulation

2. Subscribe outputs

float64[] robot_stiffness
float64[] robot_damping
float64[] robot_feedforward_torque

Every Iteration!
How the package works
Pushing task: 3kg object, demanded force equal to 30N and demanded precision equal to 1cm.

Ros2 node: task planner

Ros2 node: variable impedance modulation
Centauro

pushing
Inail 2 arm assistance
• Source code
https://github.com/ADVRHumanoids/RobotImpedanceModulation

• Documentation/Instructions
https://github.com/ADVRHumanoids/RobotImpedanceModulation

• Projects
CONCERT: https://concertproject.eu/
HARIA: http://haria-project.eu/

• Publications

“An Assistive Human-Robot Bi-Manual Co-Manipulation System for Subjects with Upper Limb Motion Deficiencies” (ICRA submitted)
THANK YOU FOR YOUR ATTENTION!

ANY QUESTIONS?

A ROS 2 Package for Online Cobots Impedance Modulation

Liana Bertoni, Luca Muratore, and Nikos Tsagarakis