
Universal Meaning Representation Format (UMRF)
for Natural Language Task Engines

Robert Valner (University of Tartu)
Selma Wanna (University of Texas)

Presenters:

ROSCon 2019

LA-UR-19-30647

Motivation and Demonstration

● The Universal Meaning Representation Format (UMRF) - generalizes
third-party meaning representations to a common formalism, making them
accessible to Robot Task Management Systems

● Implications:
○ Separates parsing and task execution layers in Natural Language (NL) pipelines

■ Easier to swap parsers
■ Accelerates development and testing of NL systems

○ Flexible enough to represent many input modalities
○ Promotes corobot applications by providing better interfaces for developing human-robot

interaction systems

● Demo materials available at
○ https://github.com/temoto-telerobotics-demos/roscon_2019_ws

2

https://github.com/temoto-telerobotics-demos/roscon_2019_ws

High-Level Overview: Front End

“Alexa, move Jack forward” “Ok Google, move Jack forward”

JSON request to
UMRF

Actions On
Google

Amazon
Alexa

JSON request to
UMRF

“Jack move forward”

Speech to Text

Text to UMRF

smartphoneEcho Dotmicrophone

“verb”: “move”
“direction”: “forward”

“verb”: “move”
“direction”: “forward”

“verb”: “move”
“direction”: “forward”

cloud service cloud service

ROS nodeROS nodeROS node

ROS node

3

High-Level Overview: Back End

“verb”: “move”
“direction”: “forward”

compiled Actions
(shared libraries)

Action Match Finder Action Indexer C++ Action Code
C++ Action Code

C++ Action Code

continuous
indexing

indexed
Actions

Action Executor

load Action

instantiate Action

execute Action

Action Engine

C++ Action Code

C++ Action Code

C++ Action Code

4

● UMRFs can build upon each other to invoke
more complex behaviour

○ Parallelism
○ Cycles

● Parameters can be passed along Actions

○ Default data types (strings, numbers, boolean)
○ Custom data types (objects, containers, pointers)

UMRF Graph
1

2

3b

4b

3a

4a

5

UMRF JSON Syntax

● Design founded in predicate-argument
semantics with influence from slot-intent
Meaning Representations (MR)

● UMRF Data Fields
○ Name - name of the action
○ Input Parameters - input information for the

action
○ Output Parameters - the resulting information

after the action is performed

6

{
 "name":"NavigateTo",
 "package_name":"ta_navigate",
 "input_parameters":{
 "verb":{
 "pvf_type":"str"

"pvf_val":"navigate"
 },
 "location":{
 "pvf_type":"str"

"pvf_val":"kitchen"
 }
 },
 "output_parameters":{
 "goal":{
 "pvf_type":"geometry_msgs::Pose"
 }
 }
}

Generated UMRF JSON for “Robot, go to the
kitchen”. The output data can be used by
other actions when combined in graph

Developed ROS tools

● TeMoto Action Engine
○ Implements UMRF Graph execution back-end in C++
○ Freely available at https://github.com/temoto-telerobotics/temoto_action_engine
○ Apache 2.0

● TeMoto Action Assistant
○ GUI tool for creating base for TeMoto Actions
○ Freely available at https://github.com/temoto-telerobotics/temoto_utils

○ Apache 2.0

7

https://github.com/temoto-telerobotics/temoto_action_engine
https://github.com/temoto-telerobotics/temoto_utils

The bigger picture - TeMoto framework

● TeMoto framework is a set of ROS based tools that
help to rapidly develop semi-autonomous
teleoperated systems

● Actions utilize the Managers via resource queries,
○ e.g., Component Manager →start the camera …

● Actions keep the application code modular and
scalable and Managers provide resource abstraction,
dynamic allocation and simple API

More information on temoto-telerobotics.github.io

TeMoto Framework

. . .

resources used by Actions

Action
calls

8

https://temoto-telerobotics.github.io/

Conclusion & Future Work

● UMRF is an intuitive convention that allows to
○ merge different NLP systems
○ segregate front-end interfaces from back-end task management

● TeMoto Action Engine is C++ implementation of UMRF definitions

● Future Work:
○ Extensive testing on more MRs and more diverse task spaces
○ Simple developer tools for designing and testing UMRF Graphs
○ Creating a tool that maps slot-intent MRs to the UMRF (automatic conversion)
○ Create an open-source Temoto parser based on task grammars

9

