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Motivation and Demonstration

● The Universal Meaning Representation Format (UMRF) - generalizes 
third-party meaning representations to a common formalism, making them 
accessible to Robot Task Management Systems

● Implications:
○ Separates parsing and task execution layers in Natural Language (NL) pipelines

■ Easier to swap parsers 
■ Accelerates development and testing of NL systems

○ Flexible enough to represent many input modalities
○ Promotes corobot applications by providing better interfaces for developing human-robot 

interaction systems

● Demo materials available at
○ https://github.com/temoto-telerobotics-demos/roscon_2019_ws
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High-Level Overview: Front End
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High-Level Overview: Back End
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● UMRFs can build upon each other to invoke 
more complex behaviour

○ Parallelism
○ Cycles

● Parameters can be passed along Actions

○ Default data types (strings, numbers, boolean)
○ Custom data types (objects, containers, pointers)

UMRF Graph
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UMRF JSON Syntax

● Design founded in predicate-argument 
semantics with influence from slot-intent 
Meaning Representations (MR)

● UMRF Data Fields
○ Name - name of the action
○ Input Parameters - input information for the 

action
○ Output Parameters - the resulting information 

after the action is performed
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{
  "name":"NavigateTo",
  "package_name":"ta_navigate",
  "input_parameters":{
    "verb":{
      "pvf_type":"str"

"pvf_val":"navigate"
    },
    "location":{
      "pvf_type":"str"

"pvf_val":"kitchen"
    }
  },
  "output_parameters":{
    "goal":{
      "pvf_type":"geometry_msgs::Pose"
    }
  }
}

Generated UMRF JSON for “Robot, go to the 
kitchen”. The output data can be used by 
other actions when combined in graph



Developed ROS tools

● TeMoto Action Engine
○ Implements UMRF Graph execution back-end in C++
○ Freely available at https://github.com/temoto-telerobotics/temoto_action_engine
○ Apache 2.0

● TeMoto Action Assistant
○ GUI tool for creating base for TeMoto Actions
○ Freely available at https://github.com/temoto-telerobotics/temoto_utils

○ Apache 2.0
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The bigger picture - TeMoto framework

● TeMoto framework is a set of ROS based tools that 
help to rapidly develop semi-autonomous 
teleoperated systems

● Actions utilize the Managers via resource queries,
○ e.g., Component Manager →start the camera … 

● Actions keep the application code modular and 
scalable and Managers provide resource abstraction, 
dynamic allocation and simple API

More information on temoto-telerobotics.github.io  

TeMoto Framework
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Conclusion & Future Work

● UMRF is an intuitive convention that allows to 
○ merge different NLP systems
○ segregate front-end interfaces from back-end task management

● TeMoto Action Engine is C++ implementation of UMRF definitions

● Future Work:
○ Extensive testing on more MRs and more diverse task spaces
○ Simple developer tools for designing and testing UMRF Graphs
○ Creating a tool that maps slot-intent MRs to the UMRF (automatic conversion)
○ Create an open-source Temoto parser based on task grammars
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