
A True Zero-Copy RMW Implementation for ROS2

ROSCon 2019

Karsten Knese (BOSCH LLC)
karsten.knese@us.bosch.com

Michael Pöhnl (BOSCH GmbH)
michael.poehnl@de.bosch.com

mailto:karsten.knese@us.bosch.com
mailto:michael.poehnl@de.bosch.com

CR/RTC-HMI4 | 2019-09-21

© 2019 Robert Bosch LLC and affiliates. All rights reserved.

A True Zero-Copy RMW Implementation for ROS2
The Use Case

Sensors Algorithms Actuators

automated driving is a data processing chain with a sensor input of up to 10 GB/s

CR/RTC-HMI4 | 2019-09-21

© 2019 Robert Bosch LLC and affiliates. All rights reserved.

A True Zero-Copy RMW Implementation for ROS2
The Problem

Node 1 Node 2

Middleware
(de)serialize

x copies

write

copy

copy

copy
Node 3

read

read

3

A typical middleware…

 copies when passing messages from the publisher to the middleware

 copies when passing messages from the middleware to the subscriber

 does internally even more copies and/or serialization/deserialization

 does at least n+1 copies for an inter-process-communication with n subscribers

CR/RTC-HMI4 | 2019-09-21

© 2019 Robert Bosch LLC and affiliates. All rights reserved.

A True Zero-Copy RMW Implementation for ROS2
The Problem

Node 1 Node 2

Middleware
(de)serialize

x copies

write

copy

copy

copy
Node 3

read

read

4

A typical middleware…

 copies when passing messages from the publisher to the middleware

 copies when passing messages from the middleware to the subscriber

 does internally even more copies and/or serialization/deserialization

 does at least n+1 copies for an inter-process-communication with n subscribers

No time to copy and serialize n GB/s while driving!

CR/RTC-HMI4 | 2019-09-21

© 2019 Robert Bosch LLC and affiliates. All rights reserved.

A True Zero-Copy RMW Implementation For ROS2
The Solution: True Zero-Copy Inter-Process-Communication

zero-copy communication is a must-have for automated driving!
5

True zero-copy means…

 it is an end-to-end zero-copy approach from publishers to subscribers, based on shared memory

 the publisher directly writes to a chunk of memory provided by the middleware

 the middleware passes message references to subscribers and manages their liveliness

Node 1 Node 2 Node 3 Node 4

Memory Pool

Shared
Memory

write read read read

CR/RTC-HMI4 | 2019-09-21

© 2019 Robert Bosch LLC and affiliates. All rights reserved.

A True Zero-Copy RMW Implementation for ROS2
The Solution: Eclipse iceoryx™

6

Eclipse iceoryx

 Shared memory inter-process-communication with zero-copy support

 Written in modern C++ with support for Linux and QNX

 Just launched as Eclipse incubation project with Apache 2.0 license

rmw_iceoryx – the iceoryx RMW implementation for ROS2

 First version available that supports publish/subscribe, the ROS2 CLI and a bridge

 Zero copy support for fixed size messages, slim serialization for dynamic messages

CR/RTC-HMI4 | 2019-09-21

© 2019 Robert Bosch LLC and affiliates. All rights reserved.

A True Zero-Copy RMW Implementation for ROS2
The Changes to ROS2 – Loaning Messages

rmw_iceoryx_cpp

publisher subscription

#1

borrow_loaned_message()

#2

publish_loaned_message()

#3

take_loaned_message()

#4

return_loaned_message()

CR/RTC-HMI4 | 2019-09-21

© 2019 Robert Bosch LLC and affiliates. All rights reserved.

A True Zero-Copy RMW Implementation for ROS2
The Constraints for Zero-Copy

fixed_size_message.msg

int32 one_int

float64 one_float

char[100] char_array

[4 byte | 8 byte | 100 byte]

dynamic_size_message.msg

int32 one_int

float64 one_float

char[] char_array

[4 byte | 8 byte | 24 byte]

fixed sized (POD)dynamic size

(heap allocation)

The topic is not allowed to use heap-based data structures (e.g. STL containers with default allocators)

enough said …

getting started

https://github.com/eclipse/iceoryx

https://github.com/ros2/rmw_iceoryx

https://github.com/karsten1987/fixed_size_ros2_demo

https://github.com/eclipse/iceoryx
https://github.com/ros2/rmw_iceoryx
https://github.com/Karsten1987/fixed_size_ros2_demo

