

SAMSUNG RESEARCH AMERICA

On Use of the SLAM Toolbox:

A Fresh(er) look at Mapping and Localization for the Dynamic World

Steve Macenski, Samsung Research America

Background - What is SLAM? How does it look like to ROS (REP 105)?

SLAM: Simultaneous Localization and Mapping

Receive sensing from the environment

- Range Finders
- Odometry Sources (encoders, IMU, etc)
- Camera
- Radar

Create a model of the world for positioning

- Sometimes used navigate
- May be visualized as grids or feature maps

An REP-105 compliant implementation will provide the map -> odom transform, but often more.

Background - A 30,000 ft View*

GMapping (pf based)

- Presented in 2007 year of the first iPhone
- Mapping large spaces is an "art"
- In my experience, diverges in >20,000 sqft

Karto (graph based)

- Excellent scan matcher
- Basis of several companies SLAM
- In my experience, an acceptable starting point

Cartographer (graph based)

- Localization, submap serialization, 3D support
- Discussions with Google haven't inspired confidence
- In my experience, couldn't reliably create useable maps
 - Thick hairy walls, missing simple loop closures, etc

by SRI International

Background - Quick Primer on Graph-based SLAM

- 4 Major Elements of Graph-based SLAM
- Sensor Matcher
- Pose-Graph
- Loop Closure Candidate Selector
- Graph Optimizer

Sensor matcher computes relative poses and confidences between candidate scans

Those are added as edges to a pose-graph

Loop closure candidates identified and correlated for new constraints

Start

Optimizer tries to reduce error in the graph

Background - Quick Primer on Graph-based SLAM

- 4 Major Elements of Graph-based SLAM
- Sensor Matcher
- Pose-Graph
- Loop Closure Candidate Selector
- Graph Optimizer

Sensor matcher computes relative poses and confidences between candidate scans

Those are added as edges to a pose-graph

Loop closure candidates identified and correlated for new constraints

Start

Optimizer tries to reduce error in the graph

SLAM Toolbox - An Overview

Map Large and Dynamic Spaces

Improved Ease of Mapping

Rich Set of Toolbox Utilities

Localization that Embraces Change

Online and Offline Processing

Continue Mapping from Prior Sessions Losslessly

O Watch

10

\star Star

% Fork

Roughly 1 hour to map 45,000 sqft Courtesy: SimbeRobotics.com

SLAM Toolbox - Mapping

Mapping Modes

- Synchronous: All measurement processing
 - May lag in large spaces if compute is limited
 - Offline: for highest quality
- Asynchronous: Best-effort processing
 - Online: navigating on limited compute

Ceres Plugin Optimizer

Serialization for Continued Mapping / Post-Processing

Map ~200,000 sqft Synchronously in Real-Time on Robot Much larger available in asynchronous & cloud processing

[Soon] Multi-robot distributed mapping

SlamToolboxPlugin

	Create Map	rool	
	Interactive Mode 🔽	Accept N	ew
Cle	ar Changes	Save Changes	
S	ave Map		
Ser	ialize Map		
Dese	erialize Map		
• Start At Doc	k 🔿 Start At Pose Est. 🔿	Start At Curr. Odom 🔿	Lo
x	Y	θ	
	Clear Measureme	nt Queue	
	Merge Map 1	rool	
Ad	d Submap		
	Generate M	ар	

SLAM Toolbox - Localization

Takes Advantage of Data + Graph

- Goal: Localization as close to SLAM as possible
- Localize with map and current state in local horizon
 - New obstacles become features, not deviations!
- If no base map given, "local SLAM"

Elastic Pose-Graph Deformation

- 1. Fixed size buffer of new scans
- 2. Add new node/constraints to graph
- 3. Once expired from buffer
 - remove & free data / nodes
- 4. Pose-graph reverts to original state

Buffer size set by *scan_buffer_size* (10)

zon ns!

SLAM Toolbox - Continue/LifeLong Mapping

Continue Mapping = Refine or explore new sp Each mode can continue building a map

- Load graph, relocalize to a pose or keynode
- Match against local environment for a refined
- Find transform from current & serialized frames
- Continue refining map

Lifelong Mapping = Above + removal of extra

* Cartographer's Lifelong mapping is my continue mapping, it does not bound computation [Experimental] A living, breathing map

- Online updates to map over many sessions
- Online removal of outdated/redundant data
 - Currently computed by a (questionable) heuristic

baces		
fit		
S		
nodes		
n		

SLAM Toolbox - Toolbox Processing

I have pose-graphs and scans serialized, what can I do with it?

Batteries Included:

- Kinematic map merging
- Manual pose-graph manipulation
- Rotate maps without aliasing pixels
- Continue to build maps / localization

Ideas:

- Map rendering with different parameters
- Merge *N* maps using graph structure / data
- Select & remove nodes/constraints
- Annotations
- Analyze odometric & sensor poses to model odometry drift

Configuration and Use

Select Parameters - See documentation for full list and descriptions

stack_size_to_use: Stack size, for serialization/deserialization only **tf_buffer_duration**: TF buffer storage duration (offline speedups)

solver_plugin: Optimizer plugin to use

mode: Mapping or localization mode for optimizer settings

map_file_name: Base filepath of serialized map to load map_start_{pose, at_dock}: Whether to start at a specific pose or dock

enable_interactive_mode: Enables interactive pose-graph manipulation

Examples

What's Next?

The Work is Never Done

#76 - Multi-laser Robots

#68 - Multi-robot Cloud Processing Sample

Additional Tools for Processing Pose-Graph/Data

- Map merging method using graph structure
- Robot odometry drift estimation
- Selectively remove nodes/constraints

Promote "true" Lifelong Mapping Node to Production

In The Wild

Navigation2 Tiny Ticket Competition Winner - Shivang Patel

Write SLAM package from scratch

Use SLAM toolbox instead

Repository, Documentation, and Issue Tracker: *https://github.com/SteveMacenski/slam_toolbox.git*

ROS Wiki Page: *http://wiki.ros.org/slam_toolbox*

Thanks to Other Active Contributor: Ivona Jambrečić

Thanks to Circuit Launch & Andrew Etherington for their help in finishing this work with facilities & a LIDAR to test

SAMSUNG

Simbe

Steve Macenski Open Source Robotics Engineering Lead s.macenski@samsung.com stevenmacenski@gmail.com

