Safety Certified ROS-native Industrial Manipulator

https://wiki.ros.org/pilz_robots

ROSCon 2019 Macau, November 1st 2019

Christian Henkel Advanced Development

Outline

Company Profile

Goals

Development Progress

System Overview

Component Aspects

Example Application

Company Profile

Pilz GmbH & Co. KG

- Independent automation technology company founded in 1948
- Headquarters in Ostfildern near Stuttgart
- ▶ Employees:
 - ▶ 2 515 worldwide
- ▶ 2018 turnover:
 - ▶ 345 Million Euro
 - ▶ 73 % export

Packaging technology

Railway engineering

Automotive

Wind energy

Manipulator Module PRBT

- ► Number of axes: 6
- Max. load capacity: 6 kg
- ▶ Repetition accuracy: +/- 0.15 mm
- Mounting direction: any
- ▶ Weight: 19 kg
- ▶ Max. operating range: 741 mm
- ▶ Power supply: 24 V DC
- ▶ Interface: CANopen, ROS
- Safety functions:
 - STO (safe torque off)
 - SBC (safe brake control)
- No proprietary controller needed

Previous work in ROS

Driver

- Based on ros_canopen
- Safety functions

Industrial planners

- Using moveit
- Industrial Requirements
- Deterministic Behavior
- Basic Movements: Linear, Point-to-Point, Circular
- Blending of the above

Python API

- Easy to use interface to aforementioned planners
- No extensive training required

Supported by ROSIN - ROS-Industrial Quality-Assured Robot Software Components. More information: rosin-project.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 732287.

Example: Moving a Robot with Python API

```
r = Robot()
# Simple ptp movement in joint space
r.move(Ptp(goal=[0, 0.5, 0.5, 0, 0, 0],
           vel scale=0.4))
start joint values = r.get current joint states()
# Relative ptp movement
r.move(Ptp(goal=[0.1, 0, 0, 0, 0, 0],
           relative=True,
           vel scale=0.2))
# Simple cartesian Lin movement
r.move(Lin(goal=Pose(position=Point(0.2, 0, 0.8)),
           vel scale=0.1,
           acc scale=0.1))
# Circ movement
r.move(Circ(goal=Pose(position=Point(0.2, -0.2, 0.8)),
            center=Point(0.1, -0.1, 0.8),
            acc scale=0.4))
r.move(Ptp(goal=pose after relative,
           vel scale=0.2)
```

More on our planner at Movelt Workshop tomorrow @ Sheraton Grand Macao Hotel

Goals

Establish ROS in Industrial Applications

- Robot can be used with ROS
 No Proprietary Controller
 No Proprietary Teach Pendant
- → As much functionality as possible implemented in ROS
 - + Safety Controller for Safety Functionality
- Robot certifiable under EN ISO 10218-1 Applications are build purely in ROS
- Integrator can focus on application Safety provided with the robot
- Pilz offering ROS Product Training from next Year

System Overview

ROS would be merely an afterthought

ROS as core component

► ISO 10218-1:2011 Robots and robotic devices — Safety requirements for industrial robots — Part 1: Robots

Exemplary Aspects of the Standard:

- Automatic / Manual Reduced Speed
 - Display of Mode
 - Monitoring of Reduced
 Speed

Robot stopping functions

- Emergency stop
 - Smoothly stopping
 - Brakes in emergency
 - -> Brake Test
 - within time limit
 - Triggered from Pendant

Full Standard → https://www.iso.org/standard/51330.html

Operational modes

▶ Technical overview

Development Progress

04/2019

06/2019

06/2020

Brake Test

- Robot must be able to brake safely
 - When emergency stop is pressed
 - When speed limit is violated
 - When other safety sensors are trigger
- Equipped with brakes
 - Regular testing is required
 - Safety Controller ensures test is preformed
- ▶ ROS can
 - Ask when test is required
 - ▶ Execute test at any point before time limit
- Safety Controller
 - ▶ Disables drives if test is not performed within limit
 - ▶ Ensures Safety

Example: Performing a brake test with Python API

```
r = Robot()

if r.is_brake_test_required():
    # Move robot to the pose where the brake test should be executed
    r.move(Ptp(goal=_BRAKE_TEST_POSE))

try:
    # Execute brake test
    r.execute_brake_test()

except RobotBrakeTestException as e:
    # Handle error
    rospy.logerr(e)
```

Operation Modes

- Automatic
 - ▶ Automatic execution of predefined program
 - ▶ E.g. Script written in our API
- Manual reduced speed
 - ▶ Limit of speed to 250 mm/s
 - ▶ ROS will monitor any TF frame
 - ▶ Robot can be controlled by any method in ROS
- Manual high speed
 - ▶ Limit start at 250 mm/s but can be increased
 - ▶ Control from ROS
 - ▶ For teaching etc.

Example Application: Visual Inspection

- ► Task: Inspect part features for large number of product variants
- Approach: Robot on-board camera supported on database to lookup poses and save results
- ▶ Strengths of ROS:
 - ▶ High-level control based on the adaption of State-Machine packages
 - ▶ Interface with other software components
 - Use of workspace based (OMPL) and deterministic (pilz_industrial_motion) motion planners

Current Setup

Inspection Poses

Demo Setup

Machine setup

Summary

We want to help establish ROS in industrial applications

Our robot RPBT6 supports ROS natively

We provide the safety, so you can focus on the application

Christian Henkel

Pilz GmbH & Co. KG Felix-Wankel-Straße 2 73760 Ostfildern, Germany Tel.: +49 711 3409-7860

c.henkel@pilz.de
post@henkelchristian.de

Please visit https://github.com/pilzde/pilz_robots

