
Led by

PACKML2: STATE MACHINE BASED
SYSTEM PROGRAMMING,
MONITORING AND CONTROL IN
ROS2

1

Presenter: Dejanira Araiza-Illan, PhD

Led by

Motivation

• State machines allow…
– Modelling sequential and concurrent processes and systems

– Composability

– Simplified implementation of robot control code

– (Formal) analysis

– IP protection through abstraction

• The PackML standard
– State machines to model, program and control packing processes

– Standard template with states, transitions and triggering events

2

Led by

Background

• PackML ROS package
– Released in 2016-2017

– RViz plugin (Indigo)

– Qt GUI (Kinetic)

– State machine simulator in C++

• Existing state machine libraries previously adopted in ROS
– SMACH (Python) http://wiki.ros.org/smach

– Lifecycle (C++, ROS 2 Crystal and newer)
https://github.com/ros2/demos/tree/master/lifecycle

– Qt state machine libraries https://doc.qt.io/qt-5/statemachine.html

3

http://wiki.ros.org/smach
https://github.com/ros2/demos/tree/master/lifecycle
https://doc.qt.io/qt-5/statemachine.html

Led by

Methodology for Implementation

1. Porting PackML (Kinetic) packages

2. PackML use case

3. PackML ROS 2 lifecycle package (standard PackML state
machine)

4. Comparison of PackML ROS 2 and first ROS implementation

4

Led by

1. Porting PackML Kinetic Packages to Dashing

5

packml_msgs

packml_sm

packml_ros

packml_plugin

…
Transition.srv
AllStatus.srv
…

Continuous Execute state

Time limited Execute state

Transition service
server

Status service server

Led by

1. Porting PackML Kinetic Packages to Dashing

Issues
Lack of documentation and
examples in ROS 2

Syntax changes in ROS API,
CMakeLists.txt and package.xml

Intertwined ROS code

Tests that fail and only for the
state machine library

6

Lessons Learned
Documenting and sharing the
code for the future

Separation of libraries without
ROS content vs. ROS nodes

Modularity, functions, classes,
package structure

New unit testing implemented,
for all the code

Led by

2. PackML Use Case

7

Siemens PLC

ROS 2
Dashing

OPCUA over TCP/IP

PackML state machine
in ladder code

packml_plc

ROS 2 OPCUA
client in Python 3

Led by

3. PackML ROS 2 lifecycle package

8

packml_lifecycle_msgs
…
State.msg
Transition.msg
…

packml_lifecycle

Node with PackML
SM structure in C++

packml_rcl_lifecycle

PackML SM skeleton
structure in C

Led by

4. PackML ROS 2 vs PackML ROS

No more roscore overhead
In Melodic: 327564K (Core) + 833636K (Master) + 344528K (Logger)+
504492K (Node) + 1481356K (Qt GUI) ~ 3.5GB

In Dashing: 617824K (Node) + 1864192K (RViz plugin) ~ 2.5GB

No more topics, only services

Visualization of state machine state and elapsed time per
state

More code unit testing (>80% LOC)

9

Led by

THANK YOU

PackML2 will be released open-source soon!

10

For more information, please contact me:
Dejanira Araiza-Illan
dejanira_araiza@artc.a-star.edu.sg

Please visit the
ROS-I booth 

