
ROS on OpenEmbedded
Simpler Robotics Development

ROSCon 2019 - MacauLG Electronics, USA

Agenda

● Introduction and Motivation: Mass-market Robots

● Development with ROS + OpenEmbedded

● webOS Robotics

● Demo

Introduction and Motivation: Mass-market Robots

Brian Shin

Robots for Mass Market: Expectations

● Full Experience on small form factor

● Multiple Variants & Reproducibility

● Optimized for Low Cost

● Advanced User Experiences

● Up-to-date with software and security

Possible path: reduce hardware cost + simplify software

development and maintenance

Embedded Product: Introduction

● Embedded Hardware (Single Board Computers)

● Customized for dedicated function

● Low memory footprint

● Low power consumption

● Real-time performance

Embedded Software: Challenges

● Multiple Hardware variants

● Cross Development

● Significant Customizations

● Lot of Optimizations

https://elinux.org/images/0/0a/Embedded_Linux_Build_Systems.pdf

https://elinux.org/images/0/0a/Embedded_Linux_Build_Systems.pdf

● Embedded hardware (low cost)

● OpenEmbedded (simple base Embedded Linux)

● ROS on OpenEmbedded (meta-ros)

● webOS (rich product features on OpenEmbedded)

Robots for Mass Market: Possible Solution

Development with ROS + OpenEmbedded

Herb Kuta

OpenEmbedded (OE): Introduction

“create custom Linux-based systems

regardless of the hardware architecture”

● Build system for the Linux Foundation’s Yocto Project

● Cross-compilation for many CPU architectures

● Wide variety of chipset and board support

● Provides a customizable “OpenEmbedded Linux”

● Input: recipes and configurations (“metadata”)

● Output: package archive plus bootable images

● Completely reproducible builds

● Organized into independent layers => expandable

Recipe (.bb)

DEPENDS # Build-time dependencies

RDEPENDS # Run-time dependencies

SRC_URI # Location of source

do_fetch() # Fetch the upstream source

do_patch() # Patch it with your changes

do_configure() # Run CMake, autoconf, etc.

do_compile() # Compile

do_install() # Select what’s installed

do_package() # Package what’s installed

https://www.yoctoproject.org/https://www.openembedded.org/

https://www.yoctoproject.org/
https://www.openembedded.org/wiki/Main_Page

meta-ros v2: OpenEmbedded Layers for ROS 1 & ROS 2

Super Flore: An extended platform release manager for ROS

package.xml

rosdistro_build_
cache

superflore

<ROS_DISTRO>-cache.yaml<ROS-DISTRO>/distribution.yaml

rosdep/*.yaml

generated-recipes-<ROS_DISTRO>/
/.bb

https://github.com/ros-infrastructure/superflore

https://github.com/ros-infrastructure/superflore

Clone your ROS package source

$ git clone git@github.com:<ros-package>

Generate (or regenerate) recipe

$ ros-generate-recipes <ros-package>

Add your package to the image

$ vi conf/local.conf

Build an image with your package

$ MACHINE=raspberrypi4 bitbake <image>

Clone meta-ros

$ git clone git@github.com:ros/meta-ros

Setup OE layers

$ meta-ros/scripts/mcf -f conf/ros2-dashing.mcf

Setup build environment

$ source openembedded-core/oe-init-build-env

Configure the build

$ vi conf/local.conf

Build an image

$ MACHINE=raspberrypi4 bitbake <image>

Build ROS Image

meta-ros: How to use for development

Add/Modify ROS Package

https://github.com/ros/meta-ros OpenEmbedded Build Instructions

mailto:git@github.com
mailto:git@github.com
https://github.com/ros/meta-ros
https://github.com/ros/meta-ros/wiki/OpenEmbedded-Build-Instructions

Case Study: Simplified Deployment (TurtleBot3 Waffle Pi)

1. Install Ubuntu, ROS and TB3 application
packages on the remote PC

2. Install unspecialized Ubuntu and ROS for
generic Arm architecture on RPi

3. Download source code for TB3 packages and
build them on RPi

5. Configure remote PC and RPi to communicate
with each other

4. SSH into TB3 and setup device instance
configuration (hostname, WiFi SSID, etc.)

6. Launch roscore and TB3 ROS applications on
remote PC

7. Launch TB3 ROS nodes on RPi. TB3 is
operational

1. Build image with specialized OpenEmbedded
and ROS optimized for RPi on a build PC

3. Flash image on SD card, insert it and USB flash
drive into RPi, and boot. TB3 is operational

2. Load device instance configuration (hostname,
WiFi SSID, etc.) and TB3 ROS nodes to start upon
boot on USB flash drive

Current Scheme (with remote PC) OpenEmbedded Based (no remote PC)

http://emanual.robotis.com/docs/en/platform/turtlebot3/setup/#setup

http://emanual.robotis.com/docs/en/platform/turtlebot3/setup/#setup

webOS Robotics

Lokesh Kumar Goel

LG webOS: Path to complete product

webOS is adopted on many LG devices.

Smart TV Digital
Signage

Smart
Watch

Smart
Refrigerator

Robot Open Source
Edition

https://www.webosose.org/

https://www.webosose.org/

OpenEmbedded + ROS + webOS: Advantages

● Optimized for embedded hardware (power, CPU, memory)

● Capabilities for advanced user experiences (apps/services)

● Rapid web-based application development

● Software update pipeline (from cloud to device)

● White-labeled OS (rebrandable & redistributable)

webOS Robotics: Common Base Platform

Service Robot
(Service)

Airport Robot
(Concierge)

Child Robot
(Companion)

ROBOTIS TurtleBot3

Voice
Assistant

(Google AI)

Software
Update
(OTA)

Remote
Control

Multi-
display

Cloud
(OTA,

Recovery,
Diagnostics,

Control)

Offline
Mode

Flow
Program-

ming

Build
Profiles
(with/

without UX)

SLAM Obstacle
Detection Joystick

Parking
Mode

(return to
charge
station)

Simulator
(ROS +
webOS)

Person
Detection

Emotion Engine
(Face/Emotion

detection)

Pattern Navigation
(different modes) Follow-me

CMSMobile App Airport
App

Play App
(Youtube Kids, Story

Telling, Game)

Navigation

Variants

webOS:
Specific

ROS:
Specific

ROS:
Common

webOS:
Common

Reference
Hardwares

webOS Robotics: Roadmap

Qualcomm RB3NVIDIA TX(n)

Demo

Lokesh Kumar Goel

webOS Robot Platform: Demo

ROSCON 2018: BeanBird Bot
https://youtu.be/lCGa7LkDNp0

ROSCON 2019: Big Bean Bot
https://youtu.be/nZ3QQ2HL5Vg

https://youtu.be/lCGa7LkDNp0
https://youtu.be/nZ3QQ2HL5Vg

QUESTIONS ANSWERS

ABOUT
webOS

ABOUT
OpenEmbedded

About us

Lokesh Kumar Goel

● >15 years in Embedded Systems
● Director of Engineering

Charles “Herb” Kuta

● >10 years in Embedded Systems
● Project Lead & meta-ros maintainer

Brian Shin
● Robotics and embedded systems
● Product Manager & ROS 2 TSC Rep

lokeshkumar.goel@lge.com

https://www.linkedin.com/in/lokesh-kumar-goel-3206042b/

herb.kuta@lge.com

https://www.linkedin.com/in/kuta42/

brian.shin@lge.com

https://www.linkedin.com/in/byunghyunshin/

mailto:lokeshkumar.goel@lge.com
https://www.linkedin.com/in/lokesh-kumar-goel-3206042b/
mailto:herb.kuta@lge.com
https://www.linkedin.com/in/kuta42/
mailto:brian.shin@lge.com
https://www.linkedin.com/in/byunghyunshin/

