Migrating a large ROS 1
codebase to ROS 2

A community perspective

Geoffrey Biggs (Tier IV/The Autoware Foundation)
Esteve Fernandez (Apex.Al/The Autoware Foundation)

Autoware

http://www.youtube.com/watch?v=QcjUo7kcKxo

\ Today’s Pop Quiz

How do you move a large existing community of users from ROS 1 to
ROS 2, while rebuilding your software from scratch to take advantage of
the new capabilities of ROS 2, without causing the community to

collapse?

\ Autoware.Al

e Open-source software for
self-driving vehicles

e Based on ROS 1

e Great for prototyping:
O-2-0-0-¢

e Not so great for building products AUTOWARE.

Limits of ROS 1-Based Software

e Autoware.Al’s design and implementation are constrained by ROS 1

e Extremely difficult to certify
o ROS 1 is not certifiable without significant (many years and
people) effort
o (So is Autoware.Al, which makes it worse)
o Determinism, memory safety, etc. are not possible
e Less than 6 years of life left
o Last release in mid-2020
o End-of-life in 2025
o We don’t want to maintain such a large open source software
project ourselves - lose the benefits of the herd

Limits of ROS 1-Based Software

imple launch system
o Hard to control startup order and timing of nodes
o Node wait-for loops

e Custom protocol missing many features of modern communications
middlewares
o Security!
o Real-time
o Implementation suitable for embedded systems
o Usability on lossy networks

e Nodes running out of lock-step

e (Cannot choose when to compose nodes

\ Move to ROS 2 and get...

e Managed launching

e Node lifecycles

e DDS

o QoS paradise

o DDS-Security
Composable nodes
Consistent API

Zero copy (in ROS 2 Eloquent)
Many, many other features

\ Move to ROS 2 and get...

New ways to architect your system to achieve robustness, reliability, and
safety, as well as efficiency

\ Porting to ROS 2: The Options

1. sed -i ‘s/ros/rclcpp/g’ *.h *.cpp

o Gets you to ROS 2 quickly

o Still requires some work meeting new APIs so isn’t a five-minute
job

o Behaviour is not guaranteed to be the same between ROS 1 and
ROS 2

o — Not safe without comprehensive tests

o Miss most of the great new features of ROS 2

\ Porting to ROS 2: The Options (con’t)

2. Start again and re-design

o Re-think from the architecture up to take advantage of new
capabilities of ROS 2

o More work but better long-term results (so long as you finish it at
some point

o Can fix other deep problems with your code base at the same
time

o Your community will be ... unhappy with you

AUTOWARE.

\ Autoware: The Next Generation @

utoware.Auto, the next generation of Autoware
e Aims to fix all the problems with Autoware.Al
o High test coverage
o Comprehensive and readable documentation
o Modular code base to improve Cl times, reusability and adaptability
o Flexible and easy-to-extend architecture
o Deterministic execution
e Provides a flexible framework for self-driving research and application
development
e As close to production-ready as possible for an open-source project
e Better use of and contributions to upstream
e ROS 2-based

The plan with a capital P

hrow out Autoware.Al (the ROS 1 version of Autoware)

e Design a new Autoware

o ROS 2-based
o Deterministic, real-time, memory safe, and all that other good
stuff that we want for safety
o Great new architecture that makes Autoware Even Better™
e Implement this new Autoware with software engineering

best-practices
e The result: Everyone teves hates us for forcing them to move to a

new, incomplete system!

Wait, hold on...

Porting Can Hurt A Community

e The project needs:
o Re-design to take advantage of
new capabilities of ROS 2
o Probably a lot of cleaning up and
breaking APIs
e But the community members need:
o A gradual transition
o A clear path to adoption of the
ported software
o Working software now

Porting Can Hurt A Community (con’t)

e Porting must be carefully
managed if you want to bring the
majority of your community with
you

)

L\ \/@:. P o, i o
P RS
i S 7%6; &»f 4

\ New plan!

e Start again, but don’t throw away the existing code base all at once
e Port the algorithms where appropriate, but

o Redesign the architecture

o Re-do the implementation to be memory-safe, deterministic, etc.
e Keep the community happy by building the Autoware of Theseus

The Ship of Theseus

e Thought experiment that the ancient Greeks liked to play with

o https://en.wikipedia.ora/wiki/Ship of Theseus

1. Theseus was a hero

2. He had a ship, and did great things with it, so it was kept as a
museum piece

3. Over time, bits rot and are replaced

4. When all the bits have been replaced, is it still the same ship that
Theseus used?

e See also: Your grandfather’s axe

https://en.wikipedia.org/wiki/Ship_of_Theseus

\ Autoware.Auto: Theseus’s Self-Driving Platform

Empty project

Autoware.Auto

Full functionality
Port
Full functionality algorithms

Autoware.Al

Thin wrapper around
Autoware.Auto

>

Time

Autoware.Auto: Theseus’ Self-Driving Platform

Users of Autoware.Al can continue to use it
Autoware.Al provides the missing pieces of Autoware.Auto

o Via ROS 2 launch files and the ros1_bridge

o Users of Autoware.Auto can do full self-driving

Over time, parts of Autoware.Al are removed and that functionality
used from Autoware.Auto

o Via ROS 1 launch files and the ros1_bridge

Replace Autoware.Al little by little to minimize disruption by users
If things go perfectly to plan (#)), Autoware.Al users should not
notice that they are actually using Autoware.Auto

\ Bridging Two Autowares
AUTOWARE.

e Using the ros1_bridge to join
Autoware.Al and Autoware.Auto

e Bridge translates any topics and
services where the data types
have not been changed

e rosl1_bridge does not handle
actions, but Autoware.Al does not
use actions

Point cloud data
ros1_bridge

Localisation result

AUTOWARE.

\ Bridging Two Autowares

AUTOWARE.

e \Where the data types have

Old data formats
changed, a customised

bridge is sometimes Custom bridges ros1_bridge
necessary New data
formats
e Prefer to create custom
bridges rather than restrict AUTOWARE

the new architecture

Improving Code Quality of Autoware

©@passed | Pipeline #63554898 triggered 1 week ago by Christopher Ho

Add euclidean cluster nodes

e Applying good software engineering
practices
o Rationale for every change recorded
o High test coverage from the start
o Use of Cl not just for tests but for
various design and code quality
analyses

Improving Code Quality of Autoware (con’t)

e Requirements on PRs are more strict
Must pass Cl
Add euclidean cluster rodes
Must have sufficient test coverage
Must have gone through a design review
Must meet coding style standards
Must not have unacceptable static
analyser violations
o Must add or update documentation
(documentation reviews included)
e Comprehensive integration tests using
launch testing

©passed | Pipeline #63554898 triggered 1 week agoby ~ Christopher Ho

O O O O O

\ Helping The Community Step Up

Even if higher quality is a goal, the community may not be ready

o “That contribution guide is really long...”

Help your community learn how to meet your new, higher standards

Mentor contributors!

o You cannot throw out detailed contribution requirements without
giving guidance

o Encourage new contributors, don’t throw them to the wolves

Contributors should know what they can expect of the process as

well as what the process expects of them

\ Helping The Community Step Up (con’t)

e Create detailed contribution guides
o Describe the code review process in detalil
o Provide a detailed PR review guide for reviewers
e Provide tutorials on the software engineering practices you want
used, e.g. how to
o Design and implement for testability
Write effective tests
Check test coverage
Check for memory leaks
Write for and test deterministic execution

O O O O

\ Helping The Community Step Up (con’t)

e Use automated tools to assist contributors
o Make CI available to everyone so anyone can see their PR get
checked
o Provide automated code linters, static analysers, etc. so complying
with rules is as simple as possible

\ Helping The Community Step Up (con’t)

Mentor Contributors!

New contributors especially will be discouraged by strict requirements.
Walk them through the process and provide frequent encouragement!

Autoware.Auto

Full-functionality self-driving

stack in ROS 2

Near-production quality

Strict quality control policies
o Design reviews

o Code quality maintenance
o Safety considerations

Well-documented and
mentored contribution process

End Goal

Autoware.Al

e Thin wrapper around
Autoware.Auto using the
bridge

o Mostly launch files

e For those who won’t or
cannot move to ROS 2

e Limited functionality

e Maintained by its users

Autoware.Sandbox

Box to hold proposed
extensions and
modifications to

Autoware.Auto
o For researchers and
academics

Less-strict quality policies
No need to worry about
safety

Graduation process for
algorithms to get them into
Autoware.Auto

End Goal

Autoware.Auto

e Full-func broposed
stack in
" S

rocess for
D get them into

Near-prt
e Strictq [|
o : c m n I ' archers and
) :
[. .
o : ; l I l y / ality policies
e Well-do orry about
mentor R N AN AN AN

\ Thanks!

Questions?

Links

N\

e htips://www.autoware.org/

e htips://qitlab.com/autowarefoundation/autoware.auto/Aut
owareAuto

e htips://qitlab.com/autowarefoundation/autoware.ali

e https://www.apex.ai/post/porting-algorithms-from-ros-1-t
0-ros-2

https://www.autoware.org/
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto
https://gitlab.com/autowarefoundation/autoware.ai
https://www.apex.ai/post/porting-algorithms-from-ros-1-to-ros-2
https://www.apex.ai/post/porting-algorithms-from-ros-1-to-ros-2

