
MICRO-ROS:
ROS2 ON MICRO-
CONTROLLERS

OFERA project
EU Grant 780785
www.ofera.eu

http://www.ofera.eu

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Audience Check
Micro-ROS: ROS2 on microcontrollers

Disciplines:
 Computer science
 Electrical engineering
 Mechanical engineering
 Other?

Who has used an Arduino or similar maker board?
Who has written hardware drivers for ROS?

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Microcontrollers are everywhere
Micro-ROS: ROS2 on microcontrollers

 Typical applications
 Motor control
 Sensor interfaces (AD, post-processing)

‒ Incl. sensor fusion
 Driving displays, LEDs, etc.
 Low-latency real-time control

Characteristics
 Low power usage (up to battery operation for years)
 Very predictable execution times
 Hardware integration
 Many integrated I/Os (I²C, SPI, CAN, etc.)

 Sophisticated safety-rated versions available

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BUT: Development totally disconnected
from ROS-based development

4

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Goals
Micro-ROS: ROS2 on microcontrollers

5

 Run nodes on microcontroller seamlessly
 Publish/subscribe/services just work
 Parameters/lifecycle/… just work

 Take advantage of hardware features
 Power saving
 Hard real-time scheduling
 Easy hardware access

 Developer Experience
 Build using ROS tools
 Same codebase and APIs wherever possible

 Challenges
 Resource use (RAM, CPU, Disk)
 Different build-systems, OS, community expectation

Firmware

MCU

Device (Sensor/Actuator)

ROS

Linux/Windows/Mac OS

MCP

Serial/Bus/Wireless..

Typical topology

optional

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Device Classes
Micro-ROS: ROS2 on microcontrollers

6

ROS2 Micro-ROS
Hardware X86, ARM Cortex-A, … ARM Cortex-M, ….
Resources >512 MB RAM, >8 GB Disk >100 KB RAM, >1 MB Flash
Communications Ethernet, 802.11 WiFi Serial, WPAN – 250 KBit - 1 MBit/s
Operating System Linux, Windows, MacOS RTOS (NuttX by default)
Middleware DDS variant (by default) XRCE-DDS (by default)
Middleware Abstraction RMW RMW
Client Support Library RCL RCL
Execution Layer RCLCPP / RCLPY / … RCL + RCLCPP
Executors Generic Micro-ROS custom

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro-ROS: ROS2 on microcontrollers
Ingredients
Ease of use
 Build system integration
Default configurations
Default hardware
 Looking for collaborators!

 Tutorials
Community demos
 Slack channel
Ready-to-use docker

containers

Performance & Predictability
 Executor performance
Deterministic execution
 System Modes
 Benchmarking tools

7

MCU-targeted capabilities
Middleware XRCE-DDS
Custom executors
 E.g., static ordering

MCU tracing and debugging
 Portability
 Transports extensible

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Differences between ROS 2 and Micro-ROS
micro-ROS: ROS 2 on microcontrollers

Predictable
execution

System
modes

Copyright © 2019 Robert Bosch GmbH

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

micro-ROS: ROS 2 on microcontrollers
Target Devices
Reference HW platform
 Cortex-M4 devices with ~100KB RAM

‒ Olimex STM32-E407
 Cortex-M0 investigated but no longer pursued

 3rd Party platforms
 Renesas is on track to support GR-ROSE

boards
 Sony has expressed interest in supporting their

SPRESENSE board
RTOS
 Default RTOS is NuttX
 Intel has expressed interest in working on

Zephyr support

Olimex STM32-E407STM32L1-DISCO

GR-ROSE

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Build System: Background
micro-ROS: ROS 2 on microcontrollers

10

RTOS´s are complete packages including
 Scheduling (of course)
 Networking
 Standard libraries (libc, libm, libstdc++) etc
 Tools, and many more things

RTOS´s are highly configurable
 Most things are turned off by default to save resources
 Every change can affect system headers

RTOS‘s have relatively sophisticated, diverse and complex build systems

Microcontrollers often build operating system and application into a single firmware image
 This includes all dependencies, e.g. ROS 2
 Everything is cross-compiled

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro-ROS Build Support
micro-ROS: ROS 2 on microcontrollers

11

 See https://github.com/micro-ros/micro-ros-build/micro_ros_setup/
 Features
 Creates the firmware workspace for you

‒ RTOS
‒ Apps
‒ Necessary ROS 2 packages
‒ Cross-compilation setup that avoids interference from already source ROS 2 host workspace

 Creates agent workspace for you
 Example: „ros2 run micro_ros_setup build_firmware.sh“

Upcoming work: Integrate as CMake macros for ease of use

https://github.com/micro-ros/micro-ros-build/micro_ros_setup/

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Executor Performance
micro-ROS: ROS 2 on microcontrollers

12

 The current SingleThreadedExecutor adds measurable overhead
 For some use-cases, just polling the middleware already consumes 20% of CPU

Nobleo has addresses this in
rclcpp PR 873

We‘ve also identified more
overhead in the rmw
implementations, this is current
work.

https://github.com/ros2/rclcpp/pull/873

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DDS meets MCUs: DDS-XRCE

micro-ROS: ROS 2 on microcontrollers

 OMG’s DDS-XRCE (DDS for eXtremely
Resource Constrained Environments)
brings DDS on MCUs

 Based on Client-Server architecture
 Power-Saving
 Stateless

 Agent acts on behalf of Clients (Low
resource devices) on the DDS global data
space.

Copyright © 2019 eProsima

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro XRCE-DDS

micro-ROS: ROS 2 on microcontrollers

 eProsima C99 (Client) / C++11 (Agent)
implementation of XRCE protocol

 Multiple and extensible transport support:
UDP/IP, TCP/IP, Serial … or create your
own!

 Low memory usage (Client library):
 Stack: ~2 KB
 Heap: 0 KB (only static memory)
 .Text (code in Flash): core: 64 KB +/- TCP

profile: 2 KB +/- UDP profile: 1 KB +/-
Serial profile: 5.5 KB …

 Agent library API: micro-ROS-Agent
 ROS 2

 Several success stories: Robotis,
Renesas.

 Crystal and Dashing enabled.
Open-source: https://github.com/eProsima/Micro-
XRCE-DDS/

https://micro-xrce-dds.readthedocs.io/en/latest/

Fast RTPS

Copyright © 2019 eProsima

https://github.com/eProsima/Micro-XRCE-DDS/
https://micro-xrce-dds.readthedocs.io/en/latest/

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro XRCE-DDS Client portability

micro-ROS: ROS 2 on microcontrollers

A) Clock dependency.
 Relative clock measurement. Crazyflie

timer registers e.g.

B) Platform transports.
 Simple pairs of functions required:

 Init/Close.
 Write/Read.

 Common platforms implementation
provided.

Platform

Micro XRCE-DDS

Clock Transport

Copyright © 2019 eProsima

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Drone demo

micro-ROS: ROS 2 on microcontrollers

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Status

Copyright © 2019 eProsima

Crystal Dashing Next
No executor LET executor

RMW Simple communication mechanisms. RMW configuration. Complete RMW Implementation.

Basic and nested type support, no arrays. Full type support.

NuttX firmware incorporated in build system. Incorporate new platforms to build system. e.g. FreeRTOS

Plain C API support (RCL). CPP API support (RCLPP) in some platforms.

Demos. Demos and more tutorials.

Ready to use dockers. ROS2 Packages.

CR/AEX3 | 2019-10-31
© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

 All open-sourced code at GitHub
 https://github.com/micro-ROS

 Web-site: micro-ros.github.io
 Slack micro-ros.slack.com
 ROS 2 Embedded Working Group
 ROS Discourse in Embedded category
 ROS 2 Embedded Design Page

 https://github.com/ros2/design/pull/197

Further information

micro-ROS: ROS 2 on microcontrollers

https://github.com/micro-ROS
https://micro-ros.github.io/
http://micro-ros.slack.com/
https://github.com/ros2/design/pull/197

	micro-ros:�Ros2 on micro-controllers
	Audience Check
	Microcontrollers are everywhere
	BUT: Development totally disconnected from ROS-based development
	Goals
	Device Classes
	Ingredients
	Differences between ROS 2 and Micro-ROS	
	Target Devices
	Build System: Background
	Micro-ROS Build Support
	Executor Performance
	micro-ROS: ROS 2 on microcontrollers						
	micro-ROS: ROS 2 on microcontrollers						
	micro-ROS: ROS 2 on microcontrollers						
	micro-ROS: ROS 2 on microcontrollers						
	Status
	micro-ROS: ROS 2 on microcontrollers						

