

●
●
●
●
●
●
●

●
●
●
●

●

●

●
●
●
●
●
●

●
●
●
●
●
●
●

●

➢

➢

➢

➢

➢

➢

➢

●
○
○
○
○

●
○
○

●

●
○
○
○

●
○

●

def generate_test_description():
return launch.LaunchDescription([

 launch.actions.ExecuteProcess(
 cmd=[path_to_process],
),

 # Start tests right away - no need to wait for anything in this example.
 # In a more complicated launch description, we might want this action happen
 # once some process starts or once some other event happens
 launch_testing.actions.ReadyToTest()
])

$ # can be run with:
$ launch_test launch_testing/examples/good_proc.test.py

These tests will run concurrently with the test in process. After all these tests are done,
the launch system will shut down the processes that it started up
class TestGoodProcess(unittest.TestCase):

def test_count_to_four(self, proc_info, proc_output):
 # This will match stdout from any process. In this example there is only one process
 # running
 proc_output.assertWaitFor('Loop 1', timeout=10)
 proc_output.assertWaitFor('Loop 2', timeout=10)
 proc_output.assertWaitFor('Loop 3', timeout=10)
 proc_output.assertWaitFor('Loop 4', timeout=10)

Inherits from
unittest.TestCase

ProcInfoHandler
object IOHandler

object

Waits for a particular
output on proc_info

These tests will run after with the test in process is shut-down.
@launch_testing.post_shutdown_test()
class TestProcessOutput(unittest.TestCase):

def test_exit_code(self, proc_info, proc_output):
 # Check that all processes in the launch (in this case, there's just one) exit
 # with code 0
 launch_testing.asserts.assertExitCodes(proc_info)

def test_out_of_order(self, proc_info, proc_output):
 # This demonstrates that we notice out-of-order IO
 with self.assertRaisesRegexp(AssertionError, "'Loop 2' not found"):
 with assertSequentialStdout(proc_output, <process>) as cm:
 cm.assertInStdout('Loop 1')
 cm.assertInStdout('Loop 3')
 cm.assertInStdout('Loop 2') # This should raise

Inherits from
unittest.TestCase

Decorated with
post_shutdown_test
descriptor

Asserts that the specified
process exited with a
particular exit code.

Asserts that a message
is found in the stdout
of the process

Asserts that stdout
was seen in a
particular order.

●

<test_depend>launch_testing_ament_cmake</test_depend>

●

find_package(launch_testing_ament_cmake)
add_launch_test(test/name_of_test.test.py)

●

add_launch_test(
 test/test_with_args.test.py
 ARGS "arg1:=foo"
)

Launch arguments to
be passed to the
launch test

https://github.com/ros2/rcutils/blob/dashing/test/test_logging_output_format.py
https://github.com/ros2/rcutils/blob/dashing/test/test_logging_output_format.py
https://github.com/ros2/rcl/blob/dashing/rcl/test/rcl/test_two_executables.py.in
https://github.com/ros2/rcl/blob/dashing/rcl/test/rcl/test_two_executables.py.in
https://github.com/ros2/demos/blob/dashing/demo_nodes_cpp/test/test_executables_tutorial.py.in
https://github.com/ros2/demos/blob/dashing/demo_nodes_cpp/test/test_executables_tutorial.py.in

