

NOV. 1 2019

A REACTIVE JOGGER FOR TELEOPERATION AND CONTACT TASKS

ANDY ZELENAK¹, ROBERT G REID², MITCH PRYOR¹ ¹The University of Texas at Austin, ²Woodside Energy

- Problem Statement
- Current Practice
- Solution: Reactive Jogger (jog_arm package)
- Technical Challenges
 - Deterministic Control
 - Robust Singularity Handling
 - Robust to Input Signal Noise
 - Reduce Actuator Jerk
 - Support Multiple Manipulators
 - Safe Operation
- Package Links and Demonstrations

Problem Statement

- Current Practice
- Solution: Reactive Jogger (jog_arm package)
- Technical Challenges
 - Deterministic Control
 - Robustly handle singularities
 - Robust to input signal noise
 - Minimize Actuator Jerk
 - Support Multiple Manipulators
 - Safe Operation
- Package Links and Demonstrations

<u>Problem</u>: End-effector pose regulation to avoid damaging forces during contact tasks

High-frequency EEF pose regulation is necessary for:

- Efficient teleoperation with contact tasks or collision risks
- Support contact tasks during base motions
- Robust to uncertainties/errors in contact task descriptors such as Affordance Templates

Example contact tasks:

- Opening a sprung door
- Valve turning (double-block-and-bleed)
- Manipulating high voltage switches, circuit testing

- Problem Statement
- Current Practice (example)
- Solution: Reactive Jogger (jog_arm package)
- Technical Challenges
 - Deterministic Control
 - Robustly handle singularities
 - Robust to input signal noise
 - Minimize Actuator Jerk
 - Support Multiple Manipulators
 - Safe Operation
- Package Links and Demonstrations

- Problem Statement
- Current Practice (example)
- Solution: Reactive Jogger (jog_arm package)
- Technical Challenges
 - Deterministic Control
 - Robustly handle singularities
 - Robust to input signal noise
 - Minimize Actuator Jerk
 - Support Multiple Manipulators
 - Safe Operation
- Package Links and Demonstrations

The jog_arm package

- A Jacobian-based jogger
- Utilizes *ros-control* to support robotagnosticism

Simulated Motoman SIA5 U. Texas, 2019

HEBI Robot Adam Pettinger, U. Texas, 2019

- Problem Statement
- Current Practice (example)
- Solution: Reactive Jogger (jog_arm package)
- Technical Challenges
 - Deterministic Control
 - Robustly handle singularities
 - Robust to input signal noise
 - Minimize Actuator Jerk
 - Support Multiple Manipulators
 - Safe Operation
- Package Links and Demonstrations

Deterministic Control Rate

- Multi-threaded architecture
- Timeout for safety

Singularity Handling

- "Look ahead" toward singularities with singular vectors
- Slow down if singularity is closer than a threshold

Universal Robots software does not handle singularities

jog_arm singularity handling is configurable via yaml parameters

Signal Filtering

- Configurable low-pass filter
 - Computationally efficient, does not overshoot
- Reduces noise and jerk to actuators
- Thanks @SansoneG and several other contributors

Jog multiple manipulators simultaneously

 Any number of arms can be jogged simultaneously with namespacing

<node name="right_jog_arm_server" pkg="jog_arm" type="jog_arm_server" output="screen">

• Average CPU load is ~20% per arm

<u>A limitation for large industrial robots</u>

- Large industrial robots often require jerklimited commands
- Options:
 - <u>Reflexxes</u> (Google)
 - <u>TrackPose</u> (PickNik Robotics

KUKA Roboter GmbH, https://commons.wikimedia.org/wiki/File:Factory_Automation_Robotics_Palettizing_B read.jpg

- Problem Statement
- Current Practice (example)
- Solution: Reactive Jogger (jog_arm package)
- Technical Challenges
 - Deterministic Control
 - Robustly handle singularities
 - Robust to input signal noise
 - Minimize Actuator Jerk
 - Support Multiple Manipulators
 - Safe Operation
- Package Links and Demonstrations (non-contact/contact)

Package availability (part of Movelt)

https://github.com/ros-planning/moveit/tree/master/moveit_experimental/moveit_jog_arm

Tutorial <u>https://ros-planning.github.io/moveit_tutorials/doc/arm_jogging/arm_jogging_tutorial.html</u>

P. Fan, A. Pettinger, and A. Zelenak, U. Texas, 2019

Writing with a haptic pen with virtual fixtures Y. Su U. Canterbury, 2019

Controlling a UR5 intuitively with a tracker Y. Su, E. Sevestre U. Canterbury, 2019

Navigation Mode

