Industrial Manufacturing Automation Leveraging ROS

Agenda

- Scan-N-Plan Evolution
 - Blending M1 M4
 - Blending M4 (Demo)
 - Production System
- Production System
 - Overview
 - Challenges
 - Solutions

Scan-N-Plan

Evolution

2014 2016 2019

Production Systems

- Two axis gantry with 6DOF manipulator.
- Size: 6m x 4m
- Joint Effort with Integrator
 - Integrator design and built the system
 - SwRI developed the Scan-N-Plan solution
 - Offline
 - Online

Production System Offline Component

- Add new parts
- Define model data
 - Localization features
 - Verification features
 - Save to database
- Define job data
 - Dynamically generate
 - Surface Tool Path
 - Edge Tool path
 - Save to database
- Ability to reload part and modify data

Production System Online Component

- Process
 - Select parts from database
 - Scan booth
 - Localize
 - Detailed Scan
 - Motion Planning
 - Preview and Approval
 - Execution
- Logging
- Manual Manipulation

Production System Online Component

- Manual Manipulation
 - Open-Source
 - Group Selection
 - Joint and Cartesian Manipulation
 - Pkg: tesseract_rviz

Production System Contact Monitoring

- In large system it is difficult for operators to see everything while manually operating the robot.
- Mitigate this risk active contact monitoring is leverage.
- It currently publishes the contact results at 80hz for the PLC to be able to execute a safe stop to prevent operator error.

Production System Challenges

- Modeling System Constraints
 - Festooning
 - DCS Joint Exclusion Zones
 - If (J1 < 10 and J1 > -10) then
 - J2 > 60 and J2 < 80
 - J3 > -30 and J3 < 40
 - Configuration
 - Limit robot extension
 - Numerical rounding
 - Programs sent to Robot are at Joint limits or DCS Joint Limits cause robot faults
 - ROS Reading state at the same limits causing motion planning failures
 - Error Recovery

ROS SCXML

- State machine library based on Qscxml that loads a scxml state machine file definition in order to run a FSM.
- It allows attaching custom c++ function callbacks to state events and can be embeded into a qt gui application
- Open sourced in the near future.

YAK (Yet Another Kinfu)

- Improvements
 - ROS Agnostic
 - Modern CMake
 - Upgraded Cmake version for better cuda support

Noether

- Tool path generation on well behaved surface meshes (pictures above).
- All waypoints have their z axis normal to the surface.
- Surface segmentation: can divide a mesh into multiple sub-meshes based on local surface features such as average normal direction, curvature and distance.

Noether (New)

- Filter Pipeline (PointCloud & Meshes)
 - Yaml Configuration
- B-Spline Surface Reconstruction
 - PCL (Must build from source)
 - http://pointclouds.org/blog/trcs/moerwald/index.php

Input

Box Crop

➤ Outlier Removal

Output

Tesseract (Planning Environment)

- tesseract_geometry
 - capsule, convex_mesh, sdf_mesh, octomap/PointCloud
- tesseract_urdf
 - Support new shape types & Quaternions
- tesseract_kinematics (Forward, Inverse, Jacobian)
 - IKFast & OPW Kinematics
- tesseract_motion_planners
 - TrajOpt, Descartes & OMPL Integration
 - Hybrid Planners
 - Descartes + TrajOpt
 - OMPL + TrajOpt
- tesseract_ros (Full ROS support)
- tesseract_ros2 (ROS2 support Rviz pending)

Tesseract (Planning Environment)

tesseract_process_planners

- Framework that take a tool path generated on a surface and constructs a process tool path.
- Process Definition
 - Start
 - Segments
 - Segment (Approach, Process, Departure)
 - Transitions
 - From-End
 - From-Start
 - End

Tesseract/TrajOpt

TrajOpt

- Dynamic Cartesian Cost and constraints Improvements
- Evaluated to low level data structures for cost and constraints. Settled on IFOPT and Eigen AutoDiff
- Next Steps Remove dependency on Tesseract leveraging TypeErasers

Descartes Light & OPW Kinematics

- Descartes Light
 - IKFast Interface
 - Gantry sampling
 - ROS Agnostic
- OPW Kinematics
 - ROS Agnostic

Agile System in Action...

Intuitive Process Application – Registration, Multi-Process Planning

Contact Information

Levi Armstrong

- Group Leader
- Southwest Research Institute
 - 6220 Culebra Road
 - San Antonio, Texas 78238
- Phone: (210) 522-3801

Email: levi.armstrong@swri.org

- www.swri.org
- www.ros-i.org

