Flexible Framework for Quantitative Reachability Analysis

SOUTHWEST RESEARCH INSTITUTE®

November 1,2019

Agenda

Background Existing solutions REACH Results Metrics Framework Plugins Example Future work Relevance

INTELLIGENT SYSTEMS

2

Background

Industrial robotic systems designed to perform specified task(s)

- Opposed to some robotics applications where new use-cases are researched on existing hardware
- Considerations for robotic system design
 - Workspace size
 - Workspace constraints
 - Workpiece geometry
 - Robot size
 - Robot configuration

• How to evaluate concepts to objectively?

.sk(s) es are

TELLIGENT SYSTEMS

3

Background

What do we want?

- A design that:
 - I. Can reach an acceptable area on a workpiece with a given tool(s)
 - 2. Has the most flexibility for accommodating new parts/processes and/or changes to the environment
 - 3. Stays as far away from collision with the environment as possible

- To understand:

- How changes to system configuration affect the goals defined above
- How the robot system will reach desired points

NT SYSTEMS

SwRI Examples

Laser De-paint Robot

- Must reach ~90% of area on midsize aircraft (e.g. Boeing 737, Airbus A320)
- Proposed configuration: II + DOF
 - 8+ DOF manipulator
 - 3 DOF mobile base

SwRI Examples

 Military Aircraft Maintenance Robot

- Must service ~50% of area on C-17 aircraft
- Tool Z-orientation free
- Proposed configuration: 10+
 DOF
 - 7+ DOF manipulator
 - 3 DOF mobile base

INTELLIGENT SYSTEMS

Existing Solutions

- Brute force
 - CAD environment
 - Offline programming software ____
 - 3D printed models
- Smarter Approach
 - Automated robot base placement
 - Siemens Process Simulate
 - Inverse reachability
 - ROS-I Reuleaux package

Adapted from [1]

INTELLIGENT SYSTEMS

REACH

REACH – https://github.com/ros-industrial/reach Core Process - Generate desired reach points on a workpiece Solve inverse kinematics at each point - Evaluate the reachability at each point Maximize the reachability values

Report and visualize the results

TELLIGENT SYSTEMS

8

REACH

 Maximize the reachability values

 Infinite number of IK solutions for high-DOF systems

- Gradient-based IK solver
- Initial IK solution generally produces low score (if solution is even found)
- At each target
 - Use neighbors as IK seed states
 - Re-solve IK at target
 - Re-evaluate reachability at target
- Iterate until reachability stops improving

INTELLIGENT SYSTEMS

Framework

Plugin-based architecture

- Environment/inverse kinematics interface
- Reachability evaluation criteria
- Display interface
- Provides flexibility for different backends

User-specifiable via YAML file

INTELLIGENT SYSTEMS

10

Results Metrics

Results Metrics

- Percentage of targets reached
- Total reachability score of all points
- "Potential" total reachability score
 - What would the score be if the robot reached every target?
 - Total score / percentage reached
- Average number of reachable neighbors

INTELLIGENT SYSTEMS

11

Plugins

- Inverse Kinematics
 - 6-DOF constraint
 - Discretize about Z-axis
- Evaluation criteria
 - Manipulability
 - How easily the robot can move in any direction from a given pose
 - Nearest distance from collision
 - Distance from joint configuration
 - Combination of metrics (sum,
 - product, etc.)

Adapted from [2] INTELLIGENT SYSTEMS

12

Plugins

- Display plugin
 - Interactive markers at targets
 - Display robot state
 - Re-solve IK
 - Show seed state
 - Comparison between configurations
 - Results heat map

INTELLIGENT SYSTEMS

13

Example

Laser De-paint Robot

- C-I7 aircraft
- Results
 - Reach percentage: 93.6%
 - Score: 328,378
 - Normalized score: 350,832

INTELLIGENT SYSTEMS

14

Example

- Decide between several design concepts
 - Robot mounted on gantry
 - Multiple workpieces
 - Spherical wrist vs. offset wrist robot

Use reach study data to narrow down concepts

- % reachable: RI \approx R2
- Raw score: R2 > R
- Potential score: R2 >> RI
- Use Design I, Robot 2

Adapted from [2]

	Work-piece	Robot 1			Robot 2		
Design		% Reached	Raw Score	Potential Score	% Reached	Raw Score	Potential Score
D1	Object 1	91.90%	338.5	368.3	91.20%	351.9	385.9
	Object 2	73.60%	290.5	394.7	70.20%	345.2	491.79
D2	Object 1	92.70%	357.5	385.7			
	Object 2	73.20%	287.2	392.4			
D3	Object 1	74.80%	301.8	403.5	73.50%	317.0	431.3
	Object 2	57.40%	271.1	472.3	54.10%	317.5	586.85
D3							

INTELLIGENT SYSTEMS

15

Future Work

Reduce setup complexity

- GUI
- Improve mesh sampling to produce target points
- Tighter integration of mesh sampling into application
- Visualization
 - Interpolate results to create heat map
 - Results by individual evaluation metric

Non-linear optimization to maximize pose reachability

TELLIGENT SYSTEMS

16

Relevance

Makes analysis of robotic systems more feasible (especially high-DOF) systems)

Better analysis for single robot

- Task/process oriented
- Reach percentage
- Visualize robot state at various target points
- Better analysis for multiple robot concepts
 - Compare reachability scores directly
 - Visualize reachable target "diffs" between various concepts

Informs design decision more effectively than "gut feel"

SYSTEMS

Questions?

Michael Ripperger Southwest Research Institute 6220 Culebra Rd. San Antonio, TX, USA

+1 (210) 522-6292 michael.ripperger@swri.org

www.swri.org www.rosindustrial.org

©SOUTHWEST RESEARCH INSTITUT

INTELLIGENT SYSTEMS

18

References

1. http://wiki.ros.org/reuleaux

- 2. http://demonstrations.wolfram.com/ManipulabilityEllipsoidOfARob otArm
- 3. Wang, Xuhao & Zhang, Dawei & Zhao, Chen. (2017). The inverse kinematics of a 7R 6-degree-of-freedom robot with non-spherical wrist. Advances in Mechanical Engineering. 9. 168781401771498. 10.1177/1687814017714985.

IGENT SYSTEMS

19