Agenda

- Background
- Existing solutions
- REACH
- Results Metrics
- Framework
- Plugins
- Example
- Future work
- Relevance
Background

- Industrial robotic systems designed to perform specified task(s)
 - Opposed to some robotics applications where new use-cases are researched on existing hardware
- Considerations for robotic system design
 - Workspace size
 - Workspace constraints
 - Workpiece geometry
 - Robot size
 - Robot configuration
- How to evaluate concepts to objectively?
Background

- **What do we want?**
 - A design that:
 1. Can reach an acceptable area on a workpiece with a given tool(s)
 2. Has the most flexibility for accommodating new parts/processes and/or changes to the environment
 3. Stays as far away from collision with the environment as possible
 - To understand:
 - How changes to system configuration affect the goals defined above
 - How the robot system will reach desired points
SwRI Examples

- Laser De-paint Robot
 - Must reach ~90% of area on mid-size aircraft (e.g. Boeing 737, Airbus A320)
 - Proposed configuration: 11+ DOF
 - 8+ DOF manipulator
 - 3 DOF mobile base
SwRI Examples

- Military Aircraft Maintenance Robot
 - Must service ~50% of area on C-17 aircraft
 - Tool Z-orientation free
 - Proposed configuration: 10+ DOF
 - 7+ DOF manipulator
 - 3 DOF mobile base
Existing Solutions

- **Brute force**
 - CAD environment
 - Offline programming software
 - 3D printed models
 - **Hard, time-consuming, and expensive**

- **Smarter Approach**
 - Automated robot base placement
 - Siemens Process Simulate
 - **Insufficient for high-DOF systems and mobile robots**
 - Inverse reachability
 - ROS-I Reuleaux package
 - **Lacks focus on the workpiece**

Adapted from [1]
REACH

- https://github.com/ros-industrial/reach

Core Process
- Generate desired reach points on a workpiece
- Solve inverse kinematics at each point
- Evaluate the reachability at each point
- Maximize the reachability values
- Report and visualize the results
REACH

- Maximize the reachability values
 - Infinite number of IK solutions for high-DOF systems
 - Gradient-based IK solver
 - Initial IK solution generally produces low score (if solution is even found)
 - At each target
 - Use neighbors as IK seed states
 - Re-solve IK at target
 - Re-evaluate reachability at target
 - Iterate until reachability stops improving
Framework

- Plugin-based architecture
 - Environment/inverse kinematics interface
 - Reachability evaluation criteria
 - Display interface
- Provides flexibility for different back-ends
- User-specifiable via YAML file
Results Metrics

- Percentage of targets reached
- Total reachability score of all points
- “Potential” total reachability score
 - What would the score be if the robot reached every target?
 - Total score / percentage reached
- Average number of reachable neighbors
Plugins

- Inverse Kinematics
 - 6-DOF constraint
 - Discretize about Z-axis

- Evaluation criteria
 - Manipulability
 - How easily the robot can move in any direction from a given pose
 - Nearest distance from collision
 - Distance from joint configuration
 - Combination of metrics (sum, product, etc.)

Adapted from [2]
Plugins

- Display plugin
 - Interactive markers at targets
 - Display robot state
 - Re-solve IK
 - Show seed state
 - Comparison between configurations
 - Results heat map
Example

- Laser De-paint Robot
 - C-17 aircraft
 - Results
 - Reach percentage: 93.6%
 - Score: 328,378
 - Normalized score: 350,832
Example

- Decide between several design concepts
 - Robot mounted on gantry
 - Multiple workpieces
 - Spherical wrist vs. offset wrist robot
- Use reach study data to narrow down concepts
 - % reachable: $R_1 \approx R_2$
 - Raw score: $R_2 > R_1$
 - Potential score: $R_2 >> R_1$
 - Use Design 1, Robot 2

<table>
<thead>
<tr>
<th>Design</th>
<th>Work-piece</th>
<th>Robot 1</th>
<th>Robot 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Reached</td>
<td>Raw Score</td>
<td>Potential Score</td>
</tr>
<tr>
<td>D1</td>
<td>Object 1</td>
<td>91.90%</td>
<td>338.5</td>
</tr>
<tr>
<td></td>
<td>Object 2</td>
<td>73.60%</td>
<td>290.5</td>
</tr>
<tr>
<td>D2</td>
<td>Object 1</td>
<td>92.70%</td>
<td>357.5</td>
</tr>
<tr>
<td></td>
<td>Object 2</td>
<td>73.20%</td>
<td>287.2</td>
</tr>
<tr>
<td>D3</td>
<td>Object 1</td>
<td>74.80%</td>
<td>301.8</td>
</tr>
<tr>
<td></td>
<td>Object 2</td>
<td>57.40%</td>
<td>271.1</td>
</tr>
</tbody>
</table>
Future Work

- Reduce setup complexity
 - GUI
 - Improve mesh sampling to produce target points
 - Tighter integration of mesh sampling into application

- Visualization
 - Interpolate results to create heat map
 - Results by individual evaluation metric

- Non-linear optimization to maximize pose reachability
Relevance

- Makes analysis of robotic systems more feasible (especially high-DOF systems)
- Better analysis for single robot
 - Task/process oriented
 - Reach percentage
 - Visualize robot state at various target points
- Better analysis for multiple robot concepts
 - Compare reachability scores directly
 - Visualize reachable target “diffs” between various concepts
- Informs design decision more effectively than “gut feel”
Questions?

Michael Ripperger
Southwest Research Institute
6220 Culebra Rd.
San Antonio, TX, USA

+1 (210) 522-6292
michael.ripperger@swri.org

www.swri.org
www.rosindustrial.org
References