
Concurrency in ROS 1 and ROS 2

Nicolo Valigi, SWE at Cruise nicolovaligi.com
ROSCon 2019

1



Testimonials 1/2

2



Testimonials 2/2

3



This presentation covers

A journey from ROS down to the hardware.

1. From ROS abstractions to Linux threads (user-level)

2. From Linux threads to CPU hardware (kernel-level)

3. Profiling and analysis tools

4



If there’s one thing you learn from this presentation

please disable the Nagle algorithm on your TCP sockets

ros::Subscriber sub = nh.subscribe(
"my_topic",
1,
callback,
ros::TransportHints().tcpNoDelay()

);

and 1:

rosbag record --tcpnodelay

1https://github.com/ros/ros_comm/pull/1295/files

5



User-level concurrency



The basic ROS execution model

Network 
thread

Timer 
thread

Spin 
thread(s)

Callback 
queue

Figure 1: Network and spin threads interact through the callback queue

6



A single node

With a single node and a single CPU core, everything works fine:

time

But as the computation time increases, there’s not enough time to keep up, and executions
would start to overlap:

time

7



Enter the AsyncSpinner

If we don’t want to drop messages, the hope is to throw more hardware at the problem.

ROS 1 has AsyncSpinner, which spawns multiple threads that works on callbacks in parallel.

Except it doesn’t work here, as each subscription is protected by a mutex. You can opt-in on a
per-subscription basis by writing:

ros::SubscribeOptions ops;
ops.template init<std_msgs::String>(

"chatter", 1000, chatterCallback);
ops.allow_concurrent_callbacks = true;
ros::Subscriber sub = nh.subscribe(ops);

8



AsyncSpinner rocks

With this change, incoming messages are handed off to multiple CPU cores that can work on
them in parallel:

time

9



Priority inversion

If the same node subscribes to a second (higher-priority) topic, then simply having multiple
threads does not guarantee that the higher priority messages are processed first.

time

In this case, adding more worker threads is just a bandaid solution.

10



Multiple callback queues

Instead, we can assign callbacks by priority into different callback queues, create multiple
spinners, and assign a callback queue to each spinner.

// Create a second NodeHandle
ros::NodeHandle secondNh;
ros::CallbackQueue secondQueue;
secondNh.setCallbackQueue(&secondQueue);
secondNh.subscribe("/high_priority_topic", 1,

highPriorityCallback);

// Spawn a new thread for high-priority callbacks.
std::thread prioritySpinThread([&secondQueue]() {

ros::SingleThreadedSpinner spinner;
spinner.spin(&secondQueue);

});
prioritySpinThread.join();

11



Multiple queues in ROS 2

The idea is the same in ROS 2:

// Create a Node and an Executor.
rclcpp::executors::SingleThreadedExecutor executor1;
auto node1 = rclcpp::Node::make_shared("node1");
executor1.add_node(node1);

// Create another.
rclcpp::executors::SingleThreadedExecutor executor2;
auto node2 = rclcpp::Node::make_shared("node2");
executor2.add_node(node2);

// Spin the Executor in a separate thread.
std::thread spinThread([&executor2]() {

executor2.spin();
}); 12



ROS 2 Executor algorithm

The Executor has a peculiar execution model (see 2). Callbacks are scheduled starting from a
“snapshot” of ready callbacks reported by the IPC layer. Timers always go first, then
subscriptions, then services. Once all callbacks in the snapshot have run, the IPC layer is
queried again.

This is unlike ROS 1, which was plain FIFO, and is not great for predictability and leads to
priority inversion.

There’s work underway to optimize the Executor API and make it more flexible.

2Daniel Casini and Tobias Blaß and Ingo Lütkebohle and Björn B. Brandenburg, Response-Time Analysis of
ROS 2 Processing Chains Under Reservation-Based Scheduling

13

https://discourse.ros.org/t/singlethreadedexecutor-creates-a-high-cpu-overhead-in-ros-2/10077/10
https://github.com/ros2/rclcpp/issues/519


Kernel-level concurrency



From threads to CPU cores

CallbackQueues and Spinners map topics onto threads. But how do we map threads to CPU
cores? This is the job of the scheduler in the Linux kernel.

For CPU intensive tasks, the best option is to have one thread for each CPU core. I have never
seen a ROS stack like that, which means that we also need to use OS-level tools.

There are 4 main tools that can be useful for Robotics systems:

• thread priorities

• the deadline scheduler

• real-time patched kernel

• CPU affinities and cpusets

14



1/4 Thread priority

Tools like nice (or the pthread API) can be used to set the priority of threads. The default
scheduler in Linux (CFS) gives more CPU time to threads with higher priority.

But this is only guaranteed over a sufficiently large time slice. For shorter periods of time,
low-priority tasks might steal the CPU away from higher-priority tasks.

15



2/4 Deadline scheduling

The deadline scheduler is an entirely different scheduling algorithm, part of a broader effort to
make the Linux kernel more real-time capable.

Threads can opt-in to this scheduling class and get a slice of 𝑛 microseconds CPU time every
time period of 𝑚 microseconds.

Deadline-scheduled tasks have priority over all other tasks in the system, and are guaranteed
not to interfere with each other.

16



2/4 SCHED_DEADLINE code example

struct sched_attr attr;

attr.size = sizeof(attr);
attr.sched_flags = 0;
attr.sched_nice = 0;
attr.sched_priority = 0;

/* This creates a 10ms/30ms reservation */
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 10 * 1000 * 1000;
attr.sched_period = attr.sched_deadline = 30 * 1000 * 1000;

int ret = sched_setattr(0, &attr, flags);

17



3/4 SCHED_DEADLINE and real-time kernels

Even with deadline scheduling, the kernel can still steal the CPU away from user code. The
RT_PREEMPT patch to the kernel improves the situation quite a bit, and improves the latency
distribution as reported in 3:

3Carlos San Vicente Gutiérrez, Lander Usategui San Juan, Irati Zamalloa Ugarte, Víctor Mayoral Vilches,
Real-time Linux communications: an evaluation of the Linux communication stack for real-time robotic
applications 18



4/4 sched_getaffinity and cpuset

On multi-core machines, the Linux scheduler has heuristics to choose which CPU core a thread
should run on. Sometimes, we want more control.

sched_setaffinity and cpusets can be used to limit which CPU cores a task can be
scheduled on.

This improves cache performance and further limits interference between different components.

19



Profiling and analysis tools



perf

perf is today’s shiniest tool for Linux profiling, but is based on sampling.

Figure 2: _

20



Application-level tracing

There’s a plethora of other tracing tools on the market:

• github.com/bosch-robotics-cr/tracetools
• LTTng

To keep things simple, you can just add custom profiling code. Often implemented as RTTI
objects in C++ to measure the runtime of (nested) scopes:

• github.com/swri-robotics/swri_profiler
• github.com/hrydgard/minitrace

21

github.com/bosch-robotics-cr/tracetools
https://lttng.org/docs/v2.11/
github.com/swri-robotics/swri_profiler
github.com/hrydgard/minitrace


Chrome tracing format

The Chromium project has a nice frontend to visualize tracing data.

Figure 3: ct

22



Common issues with profiling ROS stacks

• Callback queues and worker thread pools remove all the context between related
computations, thus making it harder to debug concurrency issues.

• Adding metadata to the profiler (timestamps, function arguments, etc..) helps trace the
flow of execution during analysis.

23



10.000 feet view



10.000 feet view

• Concurrency is hard: the more threads you have on the system, the harder it is to ensure
that the system is doing what you want.

• ROS encourages you to have lots of threads, and treats them like cattle. Please treat your
threads like pets.

• Libraries should never call std::thread directly: nodes should have control over
parallelism to avoid overloading or underloading the system.

24



Thank you / Questions


	User-level concurrency
	Kernel-level concurrency
	Profiling and analysis tools
	10.000 feet view
	Thank you / Questions

