

colcon

Universal Build Tool
Nov. 1st 2019, Dirk Thomas

ROSCon 2019, Macau, China

Building a package
Prerequisites:

all external dependencies are available
the environment is set up to make ext. dep. locatable

Input: the sources of a package
Build the package using its build system

Install the package artifacts
Output: artifacts ready to be used

Setup the environment to use the installed package

No, we don't want to read the README to figure out:
what dependencies are needed
what build system is being used and how to invoke it
what environment variables need to be updated before / a�er

Building a set of packages
Prerequisites:

all external dependencies are available
the environment is set up
to make ext. dep. locatable

Input: the sources of a set of packages
Compute the dependency graph
Process the packages in topological order:
for each package

Update the environment to include previous built packages
which the package depends on
Build and install the package using its build system

Output: artifacts ready to be used
Setup the environment to use all installed packages

Generated by
colcon-graphviz-anim

https://github.com/colcon/colcon-graphviz-anim

Wait, don't we have that already?
1. 2. 3. 4. 5. 6. 7. 8.

catkin_make:

catkin_make_isolated:

catkin_tools:

ament_tools:

But...

1. A pkg shouldn't need to know about the internals of other pkgs
2. Should be deterministic - unrelated pkgs shouldn't affect the result
3. Ability to process various package types, e.g. CMake, Python, <put-your-here>
4. Native support for Linux, macOS, and Windows
5. Support packages "as-is", e.g. no package.xml as for FastRTPS
6. Build as fast as possible
7. Good user experience / usability features
8. Extensible code base

 collective construction

High level goals

The tool should make building, testing and using multiple packages easy
It should be possible to add support for
any kind of build system using extensions
It should be possible to build any set of packages without requiring changes to
their sources - if necessary missing information can be provided externally,
e.g.:

Build Ignition packages
Handle one-off cases, e.g. pass -DENABLE_FOO to a single package

A�er building packages they must be immediately usable
which includes setting up necessary environment variables etc.

From colcon.readthedocs.io

https://colcon.readthedocs.io/en/released/developer/design.html

 collective construction

Out of scope - covered by other tools

Fetch sources of the packages → vcstool
Install dependencies of the packages → rosdep
Create pkg-level binary packages (e.g. .deb) → bloom, dpkg-buildpackage

From colcon.readthedocs.io

https://colcon.readthedocs.io/en/released/developer/design.html

 collective construction

So�ware engineering goals

All the functionality provided should be exposed in a way
that it can be reused by other extensions
The separation into multiple Python packages is being used to encourage
modularity and loose coupling (), it is also used to
demonstrate extensibility and show that certain features are not "special"
but can be contributed externally
Each component should have responsibility over a single part of the so�ware
()
Each functionality added should follow the principle
"you don’t pay for what you don’t use"

From

Law of Demeter

Single responsibility principle

colcon.readthedocs.io

https://en.wikipedia.org/wiki/Law_of_Demeter
https://en.wikipedia.org/wiki/Single_responsibility_principle
https://colcon.readthedocs.io/en/released/developer/design.html

Setup colcon
Install colcon including common extensions, via:

the Debian package python3-colcon-common-extensions or
the Python package colcon-common-extensions

Using bash or zsh? Get completion!
Install python3-argcomplete [deb] / argcomplete [pip]
Source the completion script colcon-argcomplete.bash|zsh from:

/usr/share/colcon_argcomplete/hook/ or
$HOME/.local/share/colcon_argcomplete/hook/

Liked roscd? Try colcon_cd
Source the script colcon_cd.sh (similar location)

Check for updates in the future: colcon version-check

For more details see colcon.readthedocs.io

https://colcon.readthedocs.io/en/released/user/installation.html

Workspace Layout
In ROS the sources of the packages to be processes are commonly placed

within a workspace root <ws>
in a subdirectory named src

 <ws>
 |-- src
 |-- dir1
 |-- package.xml [with the name tag containing "pkg1"]
 |-- some_name
 |-- package.xml [nested under another package not supported]
 |-- dir2
 |-- dir3
 |-- CMakeLists.txt [with the function call "project(pkg3)"]
 |-- dir4
 |-- setup.py [with the setup argument "name='pkg4'"]
 |-- dir5
 |-- COLCON_IGNORE [empty marker file]
 |-- ...

build Command
Build all packages in the workspace: colcon build

Minimal output showing progress on a by-package level
(if everything goes smooth)
By default if any package fails all ongoing packages are
aborted, no others are started
E.g. pass custom CMake args: --cmake-args
which are applied to all processed packages

Note: if you build more than once make sure to use ccache.

Metadata
Sometimes you want to pass pkg-specific arguments

Via CLI that would be cumbersome verbose
Therefore being done via yaml files

A file named ./colcon.meta is picked up
automatically
Otherwise pass custom files using --metas

See for information about .meta files.
See for information how to share such files.

 $ colcon build
 Starting >>> pkg1
 Starting >>> pkg2
 Finished <<< pkg1 [10s]
 Starting >>> pkg3
 Finished <<< pkg3 [10s]
 Starting >>> pkg5
 Finished <<< pkg2 [25s]
 Starting >>> pkg4
 Finished <<< pkg5 [20s]
 Finished <<< pkg4 [20s]

 Summary: 5 packages finished [45s]

 {
 "names": {
 "fastrtps": {
 "cmake-args": ["-DSECURITY=ON"]
 }
 }
 }

colcon.readthedocs.io
colcon-metadata-repository

https://colcon.readthedocs.io/en/released/user/configuration.html#meta-files
https://github.com/colcon/colcon-metadata-repository

Event Handlers
By default the actual output of the build isn't shown.

Why? Because otherwise the output from concurrent packages would interleave.
Instead:

Status line

Any stderr output will be shown a�er a package finished
stderr output doesn't mean it failed
it could fail without stderr output (e.g. on Windows)

But - also by default - any output it written to a log file

See section Event handler arguments in colcon build --help
Show all output a�er a pkg finished: --event-handlers console_cohesion+
Output on-the-fly (usually only when building a single pkg): console_direct+
The suffix + enables a specific handler, - disables it

 [23s] [2/5 complete] [2 ongoing] [pkg2:install - 23s] [pkg5:cmake - 1s]

 <ws>
 |-- log
 |-- <cmd>_<timestamp>
 |-- latest_<cmd>
 |-- latest
 |-- events.log
 |-- logger_all.log
 |-- <pkg>
 |-- command.log
 |-- stderr.log
 |-- stdout.log
 |-- stdout_stderr.log
 |-- streams.log

list Command
1. Discovery

Determine directories to check for a package
Default: recursively crawl for pkgs --base-paths .
Alternatives:

explicit (non-recursive) list of paths --paths
get a list of paths from a configuration file --metas

See section Discovery arguments in
colcon list --help for all arguments

2. Identification
Determine if a directory contains a package
as well as its name and type, e.g.:

ROS pkg: has a package.xml following a specific schema
CMake pkg: has a CMakeLists.txt file
Python pkg: has a setup.py file

3. Augmentation
Add metadata to identified packages

E.g.: a package named Gazebo has a share/gazebo/setup.sh file which should be sourced
(see)

 <ws>
 |-- src
 |-- dir1
 |-- package.xml
 |-- some_name
 |-- package.xml
 |-- dir2
 |-- dir3
 |-- CMakeLists.txt
 |-- dir4
 |-- setup.py
 |-- dir5
 |-- COLCON_IGNORE
 |-- ...

colcon-metadata-repository

 $ colcon list
 pkg1 <ws>/src/dir1 (ros.ament_cmake)
 pkg3 <ws>/src/dir2/dir3 (cmake)
 pkg4 <ws>/src/dir2/dir4 (python)

https://github.com/colcon/colcon-metadata-repository/blob/master/Gazebo.meta

info Command

The ros. prefix identifies that the package has a package.xml file
Together with the ament_cmake suffix it determines
how the package is processed

The dependencies are (in this case) extracted from the package.xml file
Some dependencies are package names in the workspace,
others name external dependencies (those are irrelevant for colcon)

 $ colcon info ament_cmake_core
 path: <ws>/src/ament_cmake_core
 type: ros.ament_cmake
 name: ament_cmake_core
 dependencies:
 build: ament_package cmake python3-catkin-pkg-modules
 run: ament_package cmake python3-catkin-pkg-modules
 test:
 metadata:
 version: 0.8.0

graph Command
Visualize the dependencies between packages

Processing the packages sequentially from top to bottom ensures the topological order
Pkgs without dependencies between each other can be processed concurrently

The order of pkg4 and pkg5 depends on which dependencies are completed first

 $ colcon graph --legend
 + marks when the package in this row can be processed
 * marks a direct dependency from the package indicated
 by the + in the same column to the package in this row
 . marks a transitive dependency

 pkg1 + **.
 pkg2 + *
 pkg3 + *
 pkg4 +
 pkg5 +

colcon graph --dot | dot ...

Package Selection Arguments
Instead of processing all packages in a workspace you o�en
want to only process a subset to speed up your workflow.

The following options apply to various commands:

A�er making changes to packages:
Only process specific packages:
--packages-select <pkgname1> [<pkgname2> ..]

Note: when used with build their dependencies must have been build before
Don't know what has changed and only want to use pkgX?

Build up to specific pkgs - including recursive dependencies: --packages-up-to pkgX
Process all recursive downstream packages of pkgY?

Including pkgX: --packages-above <pkgY>
Excluding pkgX: --packages-select-by-dep <pkgY>

See section Package selection arguments in e.g. colcon build --help
E.g. --packages-select-regex <regex>, --packages-select-build-failed

Note: there are options to skip packages. Skipping is different from previous seen
ignoring. The former doesn't process the package but uses it as a dependency for
others. The later is equal to the package not being in the workspace.

More Complex Package Selection

Sometimes the existing package selection arguments
aren't covering what you want to select / skip.

1. Combined logic using nested invocations:
E.g. use --packages-up-to but with multiple package names matching a regular expression:

Use colcon list --packages-select-regex <regex> to determine the set of packages
Use --packages-up-to with the result of the previous determined package names

colcon build --packages-up-to `colcon list --packages-select-regex <regex>`

2. Write your own package selection option:
Any Python package can contribute an extension providing additional command line arguments

test / test-result Command
Test all packages in the workspace: colcon test

Note: must build a package before testing
E.g. pass custom CTest / pytest args: --ctest-args / --pytest-args
Dealing with flaky tests:

Identify flaky tests: --retest-until-fail N
Get flaky tests to pass: --retest-until-pass N

Package Selection arguments:
A�er making changes to a package build and test the package itself
as well as all downstream packages: --packages-above
Retesting pkgs with test failures in previous runs: --packages-select-test-failures

Failing tests by default still result in a return code of zero (meaning the tests were
successfully run)

To change that pass --return-code-on-test-failure

Get a summary of all failed tests: colcon test-result

Show additional information about failed tests: --verbose
Start fresh, remove previous test results: --delete

Pointers
colcon --help / colcon <command> --help

For more context:
, improvements, bug fixes and documentation

Already many contributed extensions: bazel, bundle, cargo,
gradle, lcov-result, sanitizer-reports, spawn-shell, ...

Use it with , , , , ...

Questions...

colcon.readthedocs.io
ROS 2 Design Article

How to contribute

ROS 2 ROS 1 Gazebo Ingition

https://colcon.readthedocs.io/
http://design.ros2.org/articles/build_tool.html
https://colcon.readthedocs.io/en/released/developer/contribution.html
https://index.ros.org/doc/ros2/Tutorials/Colcon-Tutorial/
https://colcon.readthedocs.io/en/released/migration/catkin_make_isolated.html
http://gazebosim.org/tutorials?tut=ros2_installing
https://ignitionrobotics.org/docs/acropolis/install#option-3-source-installation-any-platform-

