
Code Manipulation through
Interactive Markers in a Live PreviewThomas Witte, Matthias Tichy | 31.10.2019

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 2

Some context

• Quadcopter Lab as a

demonstrator/student projects

•

• Small Lua based Domain Specific

Language (DSL) to define

missions/waypoints

•

• Programming novices often hesitant to

experiment out of fear to break things

• → Simulation, easier understanding

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 3

Defining Quadcopter Missions

• Simplify the language, syntax

• Problems developing a strategy,

estimating dimensions etc.

→ live coding / preview

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 4

Overview

• 3 main concepts:

 Live evaluation that previews runtime values and draws visualization

 Source location tracking that allows to write changes back to the code

 Mixing visualizations in RViz (integrates into existing visualizations, decoupled)

• Goal:

 Helping novices exploring, experimenting, understanding code

 Simplify debugging, remove barrier between development and runtime

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 5

Prototype

• Rqt plugin as prototype

• Editor that connects to other components

 Live visualization → InteractiveMarkers

 Live evaluation → tf, joy, …

 Simulation/execution on robot → Trajectory planning

 Graphic primitives → visualization_msgs

• Multiple instances of interpreter for preview and simulation

• Different implementation of statements

Code editor

Output console

 Connected RViz

 Start simulation/robot

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 6

Live Preview

• The code is executed after

each change and markers

are placed
Execute & place Markers

Change
Code

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 7

Live Preview

• The code is executed after

each change and markers

are placed

• Allow live modifications of

both views

Problem:

imperative language,

changing state

Execute & place Markers

Track source locations

Move
Marker

Change
Code

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 8

Interactive Markers

• Existing library, implemented in RViz

• Visualization integrates with other

ROS nodes

• Can be implemented in other

visualization tool (e.g. AR)

• Editor and live preview decoupled

Images from wiki.ros.org, CC 3.0 Attribution

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 9

Source Location Tracking (SLT)

• My program returns 4 but I want it

to be 6; what do I have to change?

• Values can have a source location

• The source location for a literal is

its location in the program code.

• The source location is propagated

along with the value.

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 10

SLT – Simple Example

• Marker control is linked to the

value that placed the marker

• Assignments etc. just copy the

value

• The source is modified at the

value‘s location and reexecuted

→ the marker is now at the

desired position

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 11

SLT – Expressions

• Forcing a desired value for an expression yields multiple results

• 5+4=7: 5 → 3 | 4 → 2 | (5 → 4.5, 4 → 2.5) | …

• Left bias implemented: first operand that has a source attached is changed

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 12

SLT – Examples, Generalizing effects

• Incomplete heuristic, but it

works in many cases

• Nice generalizing effect:

Moving a marker keeps the

shape elliptical

• Language and Domain

agnostic

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 13

tf Integration

• Interaction with physical objects

should be visible in the preview

• Capturing a pose: placing an

object and using live evaluation

• Experimentation to explore

corner cases

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 14

Live Evaluation, \ operator

• Simple script:

fly to x-coordinate of

the yellow helmet

• pose command uses tf

→ preview changes when

helmet is moved

• Show the live coordinates

in the code

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 15

Live Evaluation, \ operator

• Simple script:

fly to x-coordinate of

the yellow helmet

• pose command uses tf

→ preview changes when

helmet is moved

• Show the live coordinates

in the code

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 16

Start simulation

• Directly start script on a connected system (simulation/robot)

• Separate interpreter, implementation of functions

• write structure → move markers → see preview → run simulation (→ start robot)

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 17

Overview

• 3 main concepts:

 Live evaluation that previews runtime values and draws visualization

 Source location tracking that allows to write changes back to the code

 Mixing visualizations in RViz (integrates into existing visualizations, decoupled)

• Goal:

 Helping novices exploring, experimenting, understanding code

 Simplify debugging, remove barrier between development and runtime

Code Manipulation through Interactive Markers in a Live Preview | Thomas Witte, Matthias Tichy | 31.10.2019Page 18

Overview

• Prototype implementation:

 Not yet released

 Code available at github.com/sp-uulm/interactive_script

• Future Work:

 Evaluate prototype and DSL

 Integrate block-based language frontend

 Integrate Augmented Reality visualization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

