Using ROS and Gazebo to Safely Validate and Verify Autonomous Systems

Joshua P. Hecker Staff Software Engineer

ROSCon 2019

We never forget who we're working for®

ROS-related Projects @ LMAS

- Multiple projects built on and/or extending ROS as a core autonomy architecture:
 - Transport and mining truck fleets
 - Subsurface vehicles
 - Multiple aerial platforms
- Significant investment in vehicle and sensor modeling in Gazebo:
 - Segway RMP 440 LE (off-road platform)
 - Caterpillar 777F (mining haul truck)
 - Neptec OPAL (3D lidar sensor)
- ROS/Gazebo commonly requested by customers, agencies, proposal calls, etc.

Lockheed Martin Autonomous Systems (LMAS) Littleton, CO, USA

Autonomy Validation and Verification

- Validating and verifying autonomy software is essential to ensuring specification fulfillment, proper functionality, and safety criticality
- Performance of autonomous robots is notoriously difficult to guarantee:

Verification

Are we building

the product right?

- How can we test all reasonable real-world scenarios?
- Do tests "fail" or do they produce "new, unexpected behavior"?
- Learning adds additional layers of complexity, time, and possible outcomes

Unit Tests

Integration

Tests

Tests

Regression

Tests

- Pure simulation has drawbacks:
 - Computational requirements
 - Time vs. Quality vs. Cost
 - Reality gap

Customer

Acceptance

Tests

Validation

A Solution: Live/Virtual/Constructive Simulation

- Run ROS autonomy software on live asset
 - Minimize reality gap
- Represent live asset in Gazebo using virtual avatar
 - Minimize computational requirements (only model essentials)
 - Minimize development costs (only model essentials)
- Map live asset and virtual avatar into unified constructive environment
 - Requires accurate tracking of live asset
- Provides for rapid testing of real robots in challenging environments
- Simulates realistic collisions with minimal danger to physical systems

Physical Asset

1. Swarmie robotic hardware platform (NASA/UNM/Swarming Technologies)

Physical Asset

LOCKHEED MARTIN · Autonomous Systems

Physical Asset

Motion Capture

Physical Asset

4. Unactuated Gazebo model with required sensor simulators

Physical Asset

Virtual Avatar

Physical Asset

Implementation Details

- ROS 2D Navigation Stack on-board Swarmie (i.e. move_base):
 - Odometry input produced by encoders and IMU
 - Lidar input produced by Velodyne VLP-16
 - SLAM (gmapping package) generates occupancy grid map (offline)
 - AMCL localizes against stored occupancy map (online)
- Gazebo avatar model (unactuated)
 - VLP-16 sensor (velodyne_simulator package) replicates real lidar
 - Avatar set to static with gravity disabled
 - gazebo::physics::Entity::SetWorldPose() used to map real pose to sim

Demonstration Video Screenshots

Discussion/Future Work

- Low-cost, low-risk, prototype demonstration of LVC architecture
- Opening up new possibilities for autonomy validation and verification:

Limitations	Improvements
Lidar fusion brute force; Depends on SLAM	Intelligently fuse real and sim. point clouds
Only lidar implemented; Restricts learning, etc.	Phys./Sim. camera fusion with realistic render
Vicon needs stable, indoor space; Small robots	Investigate DGPS, others, for outdoor tracking
Demo tests only entry-level ROS functionality	Extend to production-level ROS codebases
Evaluations are hand-designed, one-off	Configure automated (Monte Carlo) testing

Wrap-Up/Credits

Questions?

Thanks: Ryker Chute (Video Production/Editing) LMAS (General Support)