Using ROS and Gazebo to Safely Validate and Verify Autonomous Systems

Joshua P. Hecker
Staff Software Engineer

ROSCon 2019
ROS-related Projects @ LMAS

• Multiple projects built on and/or extending ROS as a core autonomy architecture:
 – Transport and mining truck fleets
 – Subsurface vehicles
 – Multiple aerial platforms

• Significant investment in vehicle and sensor modeling in Gazebo:
 – Segway RMP 440 LE (off-road platform)
 – Caterpillar 777F (mining haul truck)
 – Neptec OPAL (3D lidar sensor)

• ROS/Gazebo commonly requested by customers, agencies, proposal calls, etc.
Autonomy Validation and Verification

• Validating and verifying autonomy software is essential to ensuring specification fulfillment, proper functionality, and safety criticality

• Performance of autonomous robots is notoriously difficult to guarantee:
 – How can we test all reasonable real-world scenarios?
 – Do tests “fail” or do they produce “new, unexpected behavior”?
 – Learning adds additional layers of complexity, time, and possible outcomes

• Pure simulation has drawbacks:
 – Computational requirements
 – Time vs. Quality vs. Cost
 – Reality gap

![Validation and Verification Diagram](image-url)
A Solution: Live/Virtual/Constructive Simulation

• Run ROS autonomy software on live asset
 – Minimize reality gap

• Represent live asset in Gazebo using virtual avatar
 – Minimize computational requirements (only model essentials)
 – Minimize development costs (only model essentials)

• Map live asset and virtual avatar into unified constructive environment
 – Requires accurate tracking of live asset

• Provides for rapid testing of real robots in challenging environments

• Simulates realistic collisions with minimal danger to physical systems
Example LVC Instantiation
Example LVC Instantiation

Physical Asset

1. Swarmie robotic hardware platform (NASA/UNM/Swarming Technologies)
Example LVC Instantiation

Physical Asset

2. Vicon Vantage system (24 V16 cameras)
Example LVC Instantiation

3. Infrared cameras detect passive markers

Physical Asset

Movement

Motion Capture

Capture Volume
Example LVC Instantiation

Physical Asset

Virtual Avatar

4. Unactuated Gazebo model with required sensor simulators

Motion Capture

Movement
Example LVC Instantiation

Physical Asset

Virtual Avatar

5. Gazebo/ROS plugin maps real robot pose to avatar
Example LVC Instantiation

6. Real robot gets sensed Gazebo data

Motion Capture

Sensor Data

Position Data

Movement

Physical Asset

Virtual Avatar
Example LVC Instantiation

7. Real robot trusts simulated sensors and makes decisions as if it were inside simulated environment.
Example LVC Instantiation

Physical Asset

Virtual Avatar

Sensor Data

Movement

Position Data

Motion Capture
Implementation Details

• ROS 2D Navigation Stack on-board Swarmie (i.e. move_base):
 – Odometry input produced by encoders and IMU
 – Lidar input produced by Velodyne VLP-16
 – SLAM (gmapping package) generates occupancy grid map (offline)
 – AMCL localizes against stored occupancy map (online)

• Gazebo avatar model (unactuated)
 – VLP-16 sensor (velodyne_simulator package) replicates real lidar
 – Avatar set to static with gravity disabled
 – gazebo::physics::Entity::SetWorldPose() used to map real pose to sim
Demonstration Video Screenshots
Discussion/Future Work

- Low-cost, low-risk, prototype demonstration of LVC architecture
- Opening up new possibilities for autonomy validation and verification:

<table>
<thead>
<tr>
<th>Limitations</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidar fusion brute force; Depends on SLAM</td>
<td>Intelligently fuse real and sim. point clouds</td>
</tr>
<tr>
<td>Only lidar implemented; Restricts learning, etc.</td>
<td>Phys./Sim. camera fusion with realistic render</td>
</tr>
<tr>
<td>Vicon needs stable, indoor space; Small robots</td>
<td>Investigate DGPS, others, for outdoor tracking</td>
</tr>
<tr>
<td>Demo tests only entry-level ROS functionality</td>
<td>Extend to production-level ROS codebases</td>
</tr>
<tr>
<td>Evaluations are hand-designed, one-off</td>
<td>Configure automated (Monte Carlo) testing</td>
</tr>
</tbody>
</table>
Wrap-Up/Credits

Questions?

Thanks: Ryker Chute (Video Production/Editing)
LMAS (General Support)