ROS2:

Supercharging the Jaguar 4x4

Toffee Albina (TRI) and Chris Lalancette (Open Robotics)
Outline

- Introduce the project
- ROS2 base node
- ROS2 manipulator node
- ROS2 camera node
- ROS2 navigation
- Wrapup
Dr Robot Jaguar 4x4
Jaguar 4x4

- Outdoor wheeled mobile base by Dr Robot
- Diff drive (4 wheels - replaced rear wheels with casters)
- Axis cameras
- GPS
- IMU
- Laser scanner
- Optional 3DOF + gripper manipulator
- Communication over ethernet/wireless; different IPs/ports for base, camera, manipulator
Project

• Goals
 ○ Partnership
 ■ TRI funding OSRC core ROS2 development
 ■ Additionally, TRI partners with OSRC to develop ROS2 projects for TRI
 ○ Get experience building a ROS2 robot
 ○ Is ROS2 at the point where a robot can be controlled via joystick?
 ○ Is ROS2 at the point where a robot can complete a navigation task?
 ○ Jaguar 4x4 is existing platform that allowed us to get started answering these questions until custom hardware was available
 ○ Open source all of the code for the Jaguar 4x4: https://github.com/TRI-jaguar4x4
ROS2 Software block diagram

- ROS2 teleop twist joy node
- ROS2 joystick node
- ROS2 nav node
- ROS2 arm node
- ROS2 jpeg to raw node
- ROS2 axis camera node
- Comms library

Jaguar4x4 hardware
ROS2 concepts

● Rest of talk will further explain pieces of block diagram
● Also discuss problems encountered:
 ○ How to get multiple ROS2 callbacks executing in parallel?
 ○ How to use ROS2 parameters for tuning?
 ○ How to write new-style ROS2 launch files?
Jaguar 4x4 Base
ROS2 Jaguar 4x4 base node

- Goals
 - Get feedback from the robot (temperature, encoders, IMU, etc)
 - Drive the robot via joystick
 - Autonomously drive a set distance

- Comms:
 - https://github.com/TRI-jaguar4x4/jaguar4x4_comms

- Base:
 - https://github.com/TRI-jaguar4x4/jaguar4x4_base
ROS2 Jaguar 4x4 base node robotics

- From scratch C++ ROS2 node
 - Uses shared comms library with the manipulator
 - Threading (future/promise)
 - Ping thread
 - Twist callback
 - Joystick callback (EStop)
 - Opportunistic gyro bias
 - Position updates from odometry
 - Service to drive set distance
ROS2 Jaguar 4x4 base node EStop

- Need software-defined EStop
- Subscribe to joystick channel directly; use button on joystick to EStop
- By default, ROS2 runs all service/topic callbacks on one thread
- Long-running service blocks joystick callback from running
- ROS2 Solution is Multi-threaded Executors and callback groups
 - Multi-threaded executors: multiple threads operate on ‘queue’ of work
 - Callback groups: All callbacks in a group handled by single thread
- Jaguar 4x4 base has all callbacks on single thread except for joystick
Multithreaded Executor/Callback Groups

- In main:

  ```cpp
  rclcpp::executors::MultiThreadedExecutor executor;
  auto base = std::make_shared<Jaguar4x4Base>("192.168.0.60", 10001);
  executor.add_node(base);
  executor.spin();
  ```

- In constructor for Jaguar4x4Base node:

  ```cpp
  // separate callback group for joystick callback
  joy_cb_grp_ = this->create_callback_group(
      rclcpp::callback_group::CallbackGroupType::MutuallyExclusive);
  joy_sub_ = this->create_subscription<sensor_msgs::msg::Joy>("joy",
      std::bind(&Jaguar4x4Base::joyCallback, this, std::placeholders::_1),
      Cmd_vel_qos_profile, joy_cb_grp_);
  ```
Jaguar 4x4 Manipulator
ROS2 Jaguar 4x4 manipulator node

- **Goals**
 - Get feedback from the manipulator (encoders, etc)
 - Drive the manipulator via joystick
 - Autonomously move to a particular position in space

- **Manipulator:**

 [Link to GitHub repository](https://github.com/TRI-jaguar4x4/jaguar4x4_arm)
ROS2 Jaguar 4x4 manipulator

- From scratch C++ ROS2 node
 - Uses shared comms library with the base
 - Joystick callback (EStop, move “shoulder” and “elbow” joints)
 - Same threading concept as base
 - Same ping thread concept as base
 - Service to home manipulator joints
ROS2 Jaguar 4x4 manipulator robotics

- Try to calibrate manipulator position (no home position)
- Able to calibrate “shoulder” joint based on encoder feedback
- Could not do same for “elbow” joint (not robust)
- Lesson learned: can’t really calibrate this arm automatically; need to joystick to home position before controlling autonomously
Jaguar 4x4 Camera
Jaguar 4x4 manipulator camera

- Goal: Comms with Axis camera (P-1224-E)
- Started with ROS1 Axis camera driver:
 http://wiki.ros.org/axis_camera
- Ported to ROS2 for this project:
 https://github.com/TRI-jaguar4x4/axis_camera
- Camera output is JPEG; needed jpeg_to_raw node:
Jaguar 4x4 Navigation
ROS2 Jaguar 4x4 Navigation

● Goal
 ○ Go to goal pose
 ○ Navigate over a short distance
 ■ Closed-loop navigation not required
 ■ Use odometry/IMU only

● Implemented as a service

● Used parameters for easily tuning constants

● Nav: https://github.com/TRI-jaguar4x4/jaguar4x4_nav
ROS2 Parameters

class Jaguar4x4Nav final : public rclcpp::Node
{
 Jaguar4x4Nav() : Node("jaguar4x4nav")
 {
 this->set_parameter_if_not_set("velocity_constant", VELOCITY_CONSTANT_DEFAULT);
 this->set_parameter_if_not_set("heading_constant", HEADING_CONSTANT_DEFAULT);
 this->set_parameter_if_not_set("distance_epsilon", DISTANCE_EPSILON_DEFAULT);
 }

 std::string goToGoalXY(double goal_x_m, double goal_y_m)
 {
 this->get_parameter("velocity_constant", vel_const);
 this->get_parameter("heading_constant", h_const);
 this->get_parameter("distance_epsilon", dist.epsilon);
 }

ros2 param:

$ ros2 param list jaguar4x4nav
 distance_epsilon
 heading_constant
 Velocity_constant

$ ros2 param set jaguar4x4nav velocity_constant 0.4

$ ros2 param get jaguar4x4nav velocity_constant
 Double value is: 0.4

yaml file:

jaguar4x4_nav:
 ros__parameters:
 velocity_constant: 0.4
 heading_constant: 0.1
 distance_epsilon: 0.05
ROS2 Nav Launch File

```python
import os
import ament_index_python.packages
import launch
import launch_ros.actions

def generate_launch_description():
    jaguar_base = launch_ros.actions.Node(package='jaguar4x4_base',
                                           node_executable='jaguar4x4_base_node',
                                           output='screen')
    
    ttj_prm_file = os.path.join(ament_index_python.packages.get_package_share_directory('jaguar4x4'),
                                'teleop_twist_joy_params.yaml')
    teleop_twist_joy = launch_ros.actions.Node(package='teleop_twist_joy',
                                              node_executable='teleop_node',
                                              output='screen',
                                              arguments=['__params:=' + ttj_prm_file])
    
    return launch.LaunchDescription([jaguar_base, teleop_twist_joy, joy, jaguar_arm, jaguar_nav,
                                      launch.actions.RegisterEventHandler(event_handler=launch.event_handlers.OnProcessExit(
                                          target_action=jaguar_base,
                                          on_exit=[launch.actions.EmitEvent(event=launch.events.Shutdown())])])
```

© 2018 Open Robotics
ROS2 Jaguar 4x4 Nav in Action

- Go to goal pose (straight):

  ```
  ros2 service call /go_to_goal_pose
ejaguar4x4_nav_msgs/GoToGoalPose
  '{goal_x_m:3.0, goal_y_m:0.0,
goal_theta_rad:0.0, speed_m_per_s:1.0}'
  ```

- Go to goal pose (diagonal):

  ```
  ros2 service call /go_to_goal_pose
jaguar4x4_nav_msgs/GoToGoalPose
  '{goal_x_m:2.0, goal_y_m:2.0,
goal_theta_rad:0.8, speed_m_per_s:1.0}'
  ```
Future Work
Future Work

- Work on the gyro
- Integrate gyro/odometry (EKF/robot_pose)
- Navigation PID loop (move_base?)
- Rewrite jpeg_to_raw in C++
- Try with cartographer
● Created a bare-bones Jaguar 4x4 system in ROS2
 ○ https://github.com/TRI-jaguar4x4
● Satisfactorily answered our questions about ROS2 usability
● Continuing to develop a more full-featured system on custom hardware
● Will continue to release software to the ROS2 community
● Continued TRI - OSRC partnership and ROS2 collaboration
Thank You

Questions?