Multi-Stage Docker Robot Deployments

Levon Avagyan and Xu Han

ROSCon2018 ‘ erbtph

Multi-Stage Docker Robot Deployments

Levon Avagyan and Xu Han

ROSCon2018 ‘ ertCh

obot

“Developers these days don’t know how to deploy code,
So they just ship their development environment instead”

- commenter on stackoverflow on using docker

ROSCon2018 ‘ ertCh

robotics

A Keep update sizes as small as possible
A Minimize the time and effort it takes to make a release

A Make upgrades/downgrades hermetic, no accidental halfway upgrades

Goals for Release and Deployment ROSCon2018 ‘ ertCh

robotics

Make it easy to have multiple versions and developers on one robot
Make it so that developers can build a release locally
Make developer, testing, and production environments as similar as possible

Make setting up a robot development and testing environment seamless and easy

I N R W

Minimize time spent compiling MY CODE'S COMPILING.

HEY! GET BACK
TOVORK! _/
|

D

COMPILING!

Before multi-stage docker deploys

Goals for Development ROSCon2018 ‘ fetch

robotics

A Form of containerization

A Encapsulates system dependencies, environment, executables, file systems,
etc...

A Not a VM, uses underlying kernel and has minimal virtualization overhead (in
most cases)

A Dockerfiles - description files for configuring Docker Images

L

Docker Compose - description files for starting sets of Docker Containers

A Relies on concept of image layers that can be cached, reused, and transferred

* docker

ROSCon2018 ‘ ertCh

robotics

Base Image
FROM ubuntu:18.04

RUN echo “hello world” > hello world.txt
RUN date > date.txt

RUN cp date.txt date2.txt

RUN rm date.txt

RUN echo “I am done”

Base Image
FROM ubuntu:18.04 [CACHED |

RUN echo “hello world” > hello_world.txt [CACHED |

RUN date > date.txt [CACHED |

RUN cp date.txt date2.txt [CACHED |

RUN rm date.txt [CACHED |

RUN echo “I am done” | CACHED |

Base Image
FROM ubuntu:18.04 [CACHED |

RUN echo “bye world” > hello_world.txt [CHANGED)

RUN date > date.txt
RUN cp date.txt date2.txt
RUN rm date.txt

RUN echo “I am done”

Base Image
FROM ubuntu:18.04 [CACHED |

RUN echo “bye world” > hello_world.txt [CACHED |

RUN date > date.txt [CACHED |

RUN cp date.txt date3.txt [CHANGED)

RUN rm date.txt

RUN echo “I am done”

moveit.php
—— data.txt

—— Dockerfile
—— robot.png

Base Image
FROM ubuntu:18.04

COPY data.txt data.txt

RUN cat data.txt

data.txt

| am data

Context and Copy

ROSCon2018 ‘

fetch

robotics

Base Image
FROM ubuntu:18.84 [CACHED |

COPY data.txt data.txt | CACHED) ‘—|—

| am data
RUN cat data.txt [CACHED |

data.txt

Context and Copy ROSCon2018 ‘ fetch

robotics

Base Image
FROM ubuntu:18.04 [CACHED |

data.txt

COPY data.txt data.txt(CHANGED) -1 |

| am groot
RUN cat data.txt

Context and Copy ROSCon2018 ‘ fetch

robotics

A Allows copying from intermediate stages without having those layers show up in

the final image
A Cached separately from mainline docker image

A Replaces bash scripts clobbering together different build steps

Multi-Stage Builds ROSCon2018 ‘ V-fetch

robotics

Copy Stage

FROM ubuntu:18.04 as copy stage data.txt

RUN echo “copy from me!”

| am data

RUN echo “I am data” > data.txt

Base Image
FROM ubuntu:18.04

COPY --from=copy stage data.txt data.txt -

RUN cp date.txt date2.txt

RUN echo “I am done”

Layers ROSCon2018 ‘ fetch

robotics

Copy Stage
FROM ubuntu:18.04 as copy stage [CACHED |

data.txt

RUN echo “copy from me!” [CACHED |

| am data

RUN echo “I am data” > data.txt [CACHED |

Base Image
FROM ubuntu:18.04 [CACHED |

COPY --from=copy_stage data.txt data.txt [CACHED | -+

RUN cp date.txt date2.txt | CACHED |

RUN echo “I am done” [CACHED |

Layers ROSCon2018 ‘ fetch

robotics

Copy Stage
FROM ubuntu:18.04 as copy stage [CACHED |

data.txt

RUN echo “I am changed!” (CHANGED |

| am data

RUN echo “I am data” > data.txt

Base Image
FROM ubuntu:18.04 [CACHED |

COPY --from=copy_stage data.txt data.txt [CACHED | -

RUN cp date.txt date2.txt | CACHED |

RUN echo “I am done” [CACHED |

Layers ROSCon2018 ‘ fetch

robotics

FROM ubuntu:18.04 as copy stage [CACHED | data.txt

RUN echo “I am changed!” [CACHED |

| am groot

RUN echo “I am groot” > data.txt (CHANGED |

FROM ubuntu:18.04 [CACHED |

COPY --from=copy_stage data.txt data.txt [CHANGED | -

RUN cp date.txt date2.txt

RUN echo “I am done”

Layers ROSCon2018 ‘ fetch

robotics

[A]——[B] B inherits from A - Changes very rarely
[A }-[B] B copies from A :] Major releases
[A]—-[B] B takes A as arg [:] All releases
{ Base Stage H Prod Stage
; ! Live Test
i ' Stage
Dev Base : ~ ~
[SSHlKeys] | { Stage H Build Stage Dev Stage p R
Source Code : i u
: 1 I t
Cache Breaker [--—----------prmmmm e Cl Stage
Stage - o

Structure ROSCon2018 ‘ ertCh

robotics

A Needs to be updated extremely rarely

A Only needs to be built once and can be stored in a registry

(A Can either be in same, or different Dockerfile

[SSH Keys

!

Cache Breaker

Source Code
Stage

{ Base Stage H Prod Stage }
! ' D

i i Live Test

| ' Stage

Dev Base : A

| { Stage H Build Stage } { Dev Stage p R
N ‘ Cl Stage

\ J

Frozen Stage

ROSCon2018

| \ffetch

robotics

FROM ubuntu:18.04

Install basic packages
RUN DEBIAN_FRONTEND=noninteractive apt-get update -y && \
apt-get install software-properties-common curl -y

A Allows the use of secrets without leaking them into output images

L

Can be combined with cache breaker stage to git clone private repos

A You don’t have to share build keys, everyone can use their own (though the cache

{ Base Stage H Prod Stage }
e : -)

Live Test

: Stage
: \ J
SSH JIKeys { DeS\ftaBgaese H Build Stage }{ Dev Stage p R
D

P
Source Code ; i ~
Cache Breaker |---------------------=--=-=-mmosmamooooo Cl Stage

will break)

9 Stage) N J

Secrets Stage ROSCon2018 ‘ ertCh

robotics

Cache Breaking Stage
FROM ubuntu:18.04 as secret stage

Inject the secret we want to use

ARG SUPER_SECRET_PASSWORD

Download remote file that may change between builds
RUN wget --user roscon --password $SUPER_SECRET_PASSWORD
https://legitexample.com/requirements.txt

Work Stage
FROM python:3.7.0

We can copy the requirements file but the password ARG never interacts with this stage’s
filesystem

COPY --from=secret_stage /requirements.txt /requirements.txt

RUN pip install -r requirements.txt

docker build --build-arg SUPER_SECRET_PASSWORD="hunter2" -t robot:roscon

Secrets Stage ROSCon2018 ‘ fetch

robotics

A Used to force a particular section to never be cached, without breaking the cache
for the entire Dockerfile

A Can be used to force updates, download source code, get time/date related data

A If the data copied out of this stage has not changed, the stage that copies from it will

remain cached

{ Base Stage H Prod Stage }
e : -)

: ! Live Test
| ' Stage
: Dev Base . \ Y,
SSH Keys T Build Stage Dev Stage
[o) | { Stage g } { g) .
Source Code i ’ k
Cache S CI Stage
Breaker Stage - o

Cache Breaker Stage ROSCon2018 ‘ ertCh

robotics

Cache Breaking Stage
FROM ubuntu:18.04 as cache_breaker_ stage

Breaks the cache every time this arg changes

ARG RANDOMIZER

Download remote file that may change between builds
RUN wget https://legitexample.com/requirements.txt

Work Stage
FROM python:3.7.0

COPY --from=cache breaker_stage /requirements.txt /requirements.txt
This will be cached so long as requirements.txt has not changed
RUN pip install -r requirements.txt

docker build --build-arg RANDOMIZER="§(date|md5sum)"” -t robot:roscon

Cache Breaker Stage ROSCon2018 ‘ fetch

robotics

A Contains all runtime (production) requirements for the robot

L

If you were to copy the built binaries into this stage, they should be able to run
@A Common base for dev, production, and testing images for a given release, and

inherits from frozen stage

~ A
--1 Base Stage { Prod Stage J
A J / D
: Live Test
e D ' Stage
Dev Base : "
[SSHlKeys] | Stage ‘[Build Stage } { Dev Stage p R
Source Code i - g i u
Cache Breaker |---------------------=-=--=--mmsmmmeoaoo A SEEE
Stage N 7

Base Stage ROSCon2018 ‘ ertCh

robotics

Cache Breaking Stage
FROM ubuntu:18.04 as cache_breaker_stage

ARG SUPER_SECRET_PASSWORD
ARG RANDOMIZER

Download remote file that may change between builds
RUN wget --user roscon --password $SUPER_SECRET_PASSWORD
https://legitexample.com/requirements.txt

Base Stage
FROM frozen_stage as base stage

Install all of our runtime requirements using pip, apt, curl, etc...
COPY --from=cache_breaker stage /requirements.txt /requirements.txt
RUN pip install -r requirements.txt

Base Stage ROSCon2018 ‘ fetch

robotics

A Contains all build time requirements for the robot, as well as source code
A At the end of this stage, if you were to call build on any of your projects, they should
be successful

A Can be used by developers for debugging build issues

s N
--+ Base Stage { Prod Stage J
AN J . s D

: ! Live Test
e ~ ' Stage
l Dev Base : < /
SSH Keys Build Stage - Dev Stage
[Keys | | stase J‘* g } { g) .
Source Code i i u
Cache Breaker [--:-------------f---=----cssmooooooo A SEEE
Stage N 7

Dev Base Stage ROSCon2018 ‘ ertCh

robotics

Cache Breaking Stage
FROM ubuntu:18.04 as cache_breaker_stage

ARG SUPER_SECRET_PASSWORD
ARG RANDOMIZER

Download remote file that may change between builds
RUN wget --user roscon --password $SUPER_SECRET_PASSWORD
https://legitexample.com/requirements-dev.txt

RUN git clone git@github.com:sourcecode/isthirteen.git

Dev Base Stage
FROM base stage as dev_base_ stage

COPY --from=cache_breaker stage /isthirteen /catkin ws/src/isthirteen

Install all of our build/dev requirements using pip, apt, curl, etc...
COPY --from=cache_breaker_stage /requirements-dev.txt /requirements-dev.txt
RUN pip install -r requirements-dev.txt

Dev Base Stage ROSCon2018 ‘ fetch

robotics

4 Builds all of the source code, by the end of the stage you have all of your binaries
prepared
A Gets cannibalized for binaries and then discarded

1 Will only be copied from, so you can inject secrets here as well for things such as

npm/bazel

Live Test

s D

{ Base Stage } Prod Stage

i S . J s D
- ’

Dev Base
| SSHlKeys | { Stage

Source Code v ‘
Cache Breaker ---------------pmmmmmmmm

(~ ™) Stage
\
Build Stage |- { Dev Stage

Cl Stage

Stage ~ ~

Build Stage ROSCon2018 ‘ ertCh

robotics

Base Stage
FROM dev_base stage as dev_build _stage

ARG SUPER_SECRET_PASSWORD

Build the stuff!
RUN cd catkin_ws && catkin_make install

A Is your final dev image, you should be able to put this on a newly reimaged robot

and get testing right away
A Can be used directly as a development environment, or as a base for CI/CD images

A Inherits from dev base stage so it has all of the runtime dependencies and build

dependencies
- { Base Stage H Prod Stage }
5 . e D
i i Live Test
i ' Stage
Dev Base : " /
[SSHlKeys] | { Stage H Build Stage } [Dev Stage p .
Source Code i i
Cache Breaker |[-----------mmmmoormmmoe e | A SEEE
Stage ~ ~

Dev Stage ROSCon2018 ‘ ertCh

robotics

Base Stage
FROM base_stage as prod_stage

We’re done!
COPY --from=dev_build stage /catkin_ws/ /catkin_ws/

robot and call it a day

-
: q

! J (:
Dev Base :
[SSHlKeys] { Stage \ Build Stage

Source Code .
Cache Breaker ---------------pmmmmmmmm
Stage

Copies over only the binaries, no need for the source code

Inherits from base stage so it has all of the runtime dependencies

Is your final production image, you should be able to put this on a newly reimaged

s D
Live Test
Stage
\
{ Dev Stage
s D
‘ Cl Stage
. J

Prod Stage

ROSCon2018

| \ffetch

robotics

Is your final production image, you should be able to put this on a newly reimaged

robot and call it a day
Copies over only the binaries, no need for the source code

Inherits from base stage so it has all of the runtime dependencies

Base Stage
FROM base_stage as prod_stage

We’re done, but actually!
COPY --from=dev_build stage /catkin_ws/install /catkin ws/install

Set a command to automatically run when the container is started
CMD /bin/bash -c “source /catkin_ws/install/setup.bash && roslaunch isthirteen
is it thirteen.launch”

Prod Stage ROSCon2018 ‘ fetch

robotics

[A]——[B] B inherits from A - Changes very rarely
[A }-[B] B copies from A :] Major releases
[A]—-[B] B takes A as arg :] All releases
{ Base Stage H Prod Stage
e : § B
; ! Live Test
i Stage
Dev Base Dev Build < /
[SSHlKeys] | { Stage H Stage Dev Stage
Source Code i i]
Cache Breaker |- Cl Stage
Stage - <

Optional Extensions ROSCon2018 ‘ ertCh

robotics

A Developers can have different versions with mutually exclusive dependencies

running on the same robot

A No more worries about robots other developers have snowflaked, your own

environment is portable and hermetic

ubuntu

14.04 LTS freight100

“Trusty Tahr”

%4~ Ubuntu [8.04 LTS

é Bionic Beaver

Developer Benefits ROSCon2018 ‘ fetch

robotics

A Entire build pipeline for all production robot types is now just ~300 lines of
Dockerfile

A Releases are now nightly and on-demand, take under two hours instead of a day

L

Build pipeline is transparent and easy to understand and modify
A Building a release candidate just takes github ssh keys and docker, no other

tooling required

Release Benefits

[Worry free testing in the field. If something goes wrong, just start a new container!

A Upgrades/downgrades are one shot, no failed intermediate states

Deployment Benefits ROSCon2018 ‘ ertCh

robotics

A Layer and image size is now a first class concern and can affect update and
dependency management strategies

A Changing a layer high up in the chain can cause large updates, up to 2GB in our
case
A But, images can be downloaded in the background without interrupting

operation

A Dev images with unstripped binaries can be very large (~20GB), pulling/pushing
to robots can take a while if you don’t have good wifi (still faster than pulling
source and recompiling, though!)

A Requires new infrastructure (local and cloud registries)

Considerations ROSCon2018 ‘ ertCh

robotics

Questions?

