
ROSCon2018

Multi-Stage Docker Robot Deployments
Levon Avagyan and Xu Han

ROSCon2018

Multi-Stage Docker Robot Deployments
Levon Avagyan and Xu Han

ROSCon2018

“Developers these days don’t know how to deploy code,
so they just ship their development environment instead”

- commenter on stackoverflow on using docker

ROSCon2018

❏ Keep update sizes as small as possible

❏ Minimize the time and effort it takes to make a release

❏ Make upgrades/downgrades hermetic, no accidental halfway upgrades

Goals for Release and Deployment

ROSCon2018

❏ Make it easy to have multiple versions and developers on one robot

❏ Make it so that developers can build a release locally

❏ Make developer, testing, and production environments as similar as possible

❏ Make setting up a robot development and testing environment seamless and easy

❏ Minimize time spent compiling

Goals for Development

Before multi-stage docker deploys

ROSCon2018

❏ Form of containerization

❏ Encapsulates system dependencies, environment, executables, file systems,

etc…

❏ Not a VM, uses underlying kernel and has minimal virtualization overhead (in

most cases)

❏ Dockerfiles - description files for configuring Docker Images

❏ Docker Compose - description files for starting sets of Docker Containers

❏ Relies on concept of image layers that can be cached, reused, and transferred

ROSCon2018

Base Image
FROM ubuntu:18.04

RUN echo “hello world” > hello_world.txt

RUN date > date.txt

RUN cp date.txt date2.txt

RUN rm date.txt

RUN echo “I am done”

Layers

ROSCon2018

Base Image
FROM ubuntu:18.04

RUN echo “hello world” > hello_world.txt

RUN date > date.txt

RUN cp date.txt date2.txt

RUN rm date.txt

RUN echo “I am done”

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

Layers

ROSCon2018

Base Image
FROM ubuntu:18.04

RUN echo “bye world” > hello_world.txt

RUN date > date.txt

RUN cp date.txt date2.txt

RUN rm date.txt

RUN echo “I am done”

CACHED

CHANGED

BROKEN

BROKEN

BROKEN

BROKEN

Layers

ROSCon2018

Base Image
FROM ubuntu:18.04

RUN echo “bye world” > hello_world.txt

RUN date > date.txt

RUN cp date.txt date3.txt

RUN rm date.txt

RUN echo “I am done”

CACHED

CHANGED

BROKEN

BROKEN

CACHED

CACHED

Layers

ROSCon2018

.
├── moveit.php
├── data.txt
├── Dockerfile
└── robot.png

Context and Copy

ROSCon2018

Base Image
FROM ubuntu:18.04

COPY data.txt data.txt

RUN cat data.txt

data.txt

I am data

Context and Copy

ROSCon2018

Base Image
FROM ubuntu:18.04

COPY data.txt data.txt

RUN cat data.txt

data.txt

I am data

CACHED

CACHED

CACHED

Context and Copy

ROSCon2018

Base Image
FROM ubuntu:18.04

COPY data.txt data.txt

RUN cat data.txt

data.txt

I am groot

CACHED

CHANGED

BROKEN

Context and Copy

ROSCon2018

❏ Allows copying from intermediate stages without having those layers show up in

the final image

❏ Cached separately from mainline docker image

❏ Replaces bash scripts clobbering together different build steps

Multi-Stage Builds

ROSCon2018

Copy Stage
FROM ubuntu:18.04 as copy_stage

RUN echo “copy from me!”

RUN echo “I am data” > data.txt

Base Image
FROM ubuntu:18.04

COPY --from=copy_stage data.txt data.txt

RUN cp date.txt date2.txt

RUN echo “I am done”

Layers

data.txt

I am data

ROSCon2018

Copy Stage
FROM ubuntu:18.04 as copy_stage

RUN echo “copy from me!”

RUN echo “I am data” > data.txt

Base Image
FROM ubuntu:18.04

COPY --from=copy_stage data.txt data.txt

RUN cp date.txt date2.txt

RUN echo “I am done”

data.txt

I am data

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

CACHED

Layers

ROSCon2018

Copy Stage
FROM ubuntu:18.04 as copy_stage

RUN echo “I am changed!”

RUN echo “I am data” > data.txt

Base Image
FROM ubuntu:18.04

COPY --from=copy_stage data.txt data.txt

RUN cp date.txt date2.txt

RUN echo “I am done”

CHANGED

BROKEN

Layers

data.txt

I am data

CACHED

CACHED

CACHED

CACHED

CACHED

ROSCon2018

Copy Stage
FROM ubuntu:18.04 as copy_stage

RUN echo “I am changed!”

RUN echo “I am groot” > data.txt

Base Image
FROM ubuntu:18.04

COPY --from=copy_stage data.txt data.txt

RUN cp date.txt date2.txt

RUN echo “I am done”

data.txt

I am groot
CHANGED

CHANGED

BROKEN

BROKEN

Layers

CACHED

CACHED

CACHED

ROSCon2018

SSH Keys

B copies from A

B inherits from AA B

A B

B takes A as argA B

Major releases

Changes very rarely

All releases

Structure

ROSCon2018

❏ Needs to be updated extremely rarely

❏ Only needs to be built once and can be stored in a registry

❏ Can either be in same, or different Dockerfile

SSH Keys

Frozen Stage

ROSCon2018

FROM ubuntu:18.04

Install basic packages
RUN DEBIAN_FRONTEND=noninteractive apt-get update -y && \
 apt-get install software-properties-common curl -y

Frozen Stage

ROSCon2018

❏ Allows the use of secrets without leaking them into output images

❏ Can be combined with cache breaker stage to git clone private repos

❏ You don’t have to share build keys, everyone can use their own (though the cache

will break)

SSH Keys

Secrets Stage

ROSCon2018

Cache Breaking Stage
FROM ubuntu:18.04 as secret_stage

Inject the secret we want to use
ARG SUPER_SECRET_PASSWORD
Download remote file that may change between builds
RUN wget --user roscon --password $SUPER_SECRET_PASSWORD
https://legitexample.com/requirements.txt

Work Stage
FROM python:3.7.0

We can copy the requirements file but the password ARG never interacts with this stage’s
filesystem
COPY --from=secret_stage /requirements.txt /requirements.txt
RUN pip install -r requirements.txt

docker build --build-arg SUPER_SECRET_PASSWORD="hunter2" -t robot:roscon

Secrets Stage

ROSCon2018

❏ Used to force a particular section to never be cached, without breaking the cache

for the entire Dockerfile

❏ Can be used to force updates, download source code, get time/date related data

❏ If the data copied out of this stage has not changed, the stage that copies from it will

remain cached

SSH Keys

Cache Breaker Stage

ROSCon2018

Cache Breaking Stage
FROM ubuntu:18.04 as cache_breaker_stage

Breaks the cache every time this arg changes
ARG RANDOMIZER
Download remote file that may change between builds
RUN wget https://legitexample.com/requirements.txt

Work Stage
FROM python:3.7.0

COPY --from=cache_breaker_stage /requirements.txt /requirements.txt
This will be cached so long as requirements.txt has not changed
RUN pip install -r requirements.txt

docker build --build-arg RANDOMIZER="$(date|md5sum)" -t robot:roscon

Cache Breaker Stage

ROSCon2018

❏ Contains all runtime (production) requirements for the robot

❏ If you were to copy the built binaries into this stage, they should be able to run

❏ Common base for dev, production, and testing images for a given release, and

inherits from frozen stage

SSH Keys

Base Stage

ROSCon2018

Cache Breaking Stage
FROM ubuntu:18.04 as cache_breaker_stage

ARG SUPER_SECRET_PASSWORD
ARG RANDOMIZER

Download remote file that may change between builds
RUN wget --user roscon --password $SUPER_SECRET_PASSWORD
https://legitexample.com/requirements.txt

Base Stage
FROM frozen_stage as base_stage

Install all of our runtime requirements using pip, apt, curl, etc...
COPY --from=cache_breaker_stage /requirements.txt /requirements.txt
RUN pip install -r requirements.txt

Base Stage

ROSCon2018

❏ Contains all build time requirements for the robot, as well as source code

❏ At the end of this stage, if you were to call build on any of your projects, they should

be successful

❏ Can be used by developers for debugging build issues

SSH Keys

Dev Base Stage

ROSCon2018

Cache Breaking Stage
FROM ubuntu:18.04 as cache_breaker_stage

ARG SUPER_SECRET_PASSWORD
ARG RANDOMIZER

Download remote file that may change between builds
RUN wget --user roscon --password $SUPER_SECRET_PASSWORD
https://legitexample.com/requirements-dev.txt
RUN git clone git@github.com:sourcecode/isthirteen.git

Dev Base Stage
FROM base_stage as dev_base_stage

COPY --from=cache_breaker_stage /isthirteen /catkin_ws/src/isthirteen
Install all of our build/dev requirements using pip, apt, curl, etc...
COPY --from=cache_breaker_stage /requirements-dev.txt /requirements-dev.txt
RUN pip install -r requirements-dev.txt

Dev Base Stage

ROSCon2018

❏ Builds all of the source code, by the end of the stage you have all of your binaries

prepared

❏ Gets cannibalized for binaries and then discarded

❏ Will only be copied from, so you can inject secrets here as well for things such as

npm/bazel

SSH Keys

Build Stage

ROSCon2018

Base Stage
FROM dev_base_stage as dev_build_stage

ARG SUPER_SECRET_PASSWORD

Build the stuff!
RUN cd catkin_ws && catkin_make install

Build Stage

ROSCon2018

❏ Is your final dev image, you should be able to put this on a newly reimaged robot

and get testing right away

❏ Can be used directly as a development environment, or as a base for CI/CD images

❏ Inherits from dev base stage so it has all of the runtime dependencies and build

dependencies

SSH Keys

Dev Stage

ROSCon2018

Base Stage
FROM base_stage as prod_stage

We’re done!
COPY --from=dev_build_stage /catkin_ws/ /catkin_ws/

Dev Stage

ROSCon2018

❏ Is your final production image, you should be able to put this on a newly reimaged

robot and call it a day

❏ Copies over only the binaries, no need for the source code

❏ Inherits from base stage so it has all of the runtime dependencies

SSH Keys

Prod Stage

ROSCon2018

Base Stage
FROM base_stage as prod_stage

We’re done, but actually!
COPY --from=dev_build_stage /catkin_ws/install /catkin_ws/install

Set a command to automatically run when the container is started
CMD /bin/bash -c “source /catkin_ws/install/setup.bash && roslaunch isthirteen
is_it_thirteen.launch”

❏ Is your final production image, you should be able to put this on a newly reimaged

robot and call it a day

❏ Copies over only the binaries, no need for the source code

❏ Inherits from base stage so it has all of the runtime dependencies

Prod Stage

ROSCon2018

SSH Keys

Optional Extensions

B copies from A

B inherits from AA B

A B

B takes A as argA B

Major releases

Changes very rarely

All releases

ROSCon2018

❏ Developers can have different versions with mutually exclusive dependencies

running on the same robot

❏ No more worries about robots other developers have snowflaked, your own

environment is portable and hermetic

Developer Benefits

ROSCon2018

❏ Entire build pipeline for all production robot types is now just ~300 lines of

Dockerfile

❏ Releases are now nightly and on-demand, take under two hours instead of a day

❏ Build pipeline is transparent and easy to understand and modify

❏ Building a release candidate just takes github ssh keys and docker, no other

tooling required

Release Benefits

ROSCon2018

❏ Worry free testing in the field. If something goes wrong, just start a new container!

❏ Upgrades/downgrades are one shot, no failed intermediate states

Deployment Benefits

ROSCon2018

❏ Layer and image size is now a first class concern and can affect update and

dependency management strategies

❏ Changing a layer high up in the chain can cause large updates, up to 2GB in our

case

❏ But, images can be downloaded in the background without interrupting

operation

❏ Dev images with unstripped binaries can be very large (~20GB), pulling/pushing

to robots can take a while if you don’t have good wifi (still faster than pulling

source and recompiling, though!)

❏ Requires new infrastructure (local and cloud registries)

Considerations

ROSCon2018

Questions?

