Integrating ROS and ROS2 on mixed-critical robotic systems based on embedded heterogeneous platforms

Fabio Federici, Giulio M. Mancuso

United Technologies Research Center

This document contains no USA or EU export controlled technical data.
Background

United Technologies Research Center (UTRC) ensures UTC’s technological advantage in the market and solve the toughest scientific challenges for our business unit customers.

UTC is not a robot manufacturer, but is a **user & integrator** of robotic and intelligent systems. Main applications are advanced manufacturing, assembly, manipulation, inspection, …
Proposal

Robotic systems includes **different functions** with a different level of criticality. Functions with different criticality are usually allocated on separate processing units.

Goal: integration of multiple functions over single, advanced processing units

Pros: reduced size, weight, power, cost

Cons: interference

This page does not contain any export controlled technical data
Integration of ROS-based and non-ROS-based application on the same hardware platform

- **Isolation** between different functions (time and space partitioning)
- **Communication** between the different isolated application domains.
Hardware Platforms

COTS heterogeneous devices

- Multicore CPU
- GPU
- FPGA fabric
- Memory Controller
- I/O Interfaces

Example/Candidates
- Nvidia Jetson TX2
- Xilinx Zynq Ultrascale+

This page does not contain any export controlled technical data
Jailhouse:

- Partitioning Hypervisor based on Linux.
 - Able to run bare-metal applications or (adapted) operating systems.
- Originally developed by Siemens
- Released as Free Software (GPLv2) since November 2013

PROS
- Native support for the Linux kernel
- Low latencies, good performance
- Open Source (GPL v2)
- Ported on several embedded platforms (Xilinx Zynq, Nvidia Jetson TX1/TX2)

CONS
- System boot depends on the Linux Kernel
- No partition scheduling, only static resource assignment
- Limited maturity

https://github.com/siemens/jailhouse
Jailhouse concepts

1) Fully booted Linux system

2) Linux loading Jailhouse

3) Starting the root cell

4) Loading an additional cell

This page does not contain any export controlled technical data
Integrating ROS/ROS 2

- **Pros**
 - Widely adopted
 - Large community
 - Algorithms, Libraries, Drivers

- **Cons**
 - Lack of determinism
 - Not well fit for safety critical systems

ROS/ROS2

- Linux
 - Reserved Platform Resources
 - Inter-partition communication Interface

Hypervisor

Hypervisor separation layer

General purpose OS

RTOS

Heterogeneous SoC

Non-critical functions

Critical functions

PROS

- Determinism
- Data Distribution Service
- Security

CONS

- Maturity level
- Adoption

This page does not contain any export controlled technical data
Ongoing activity & future work

Ongoing: ROS+Jailhouse benchmarking

- Inter-partition interference
- Hypervisor overhead on performance
- Inter-partition communication

Testing on NVidia Jetson TX2

Communication latency between two nodes in the same partition

<table>
<thead>
<tr>
<th></th>
<th>Average Overhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROS 1 (Kinetic)</td>
<td>~ +3 %</td>
</tr>
<tr>
<td>ROS 2 (Ardent)</td>
<td>~ +5 %</td>
</tr>
</tbody>
</table>

ROS+Linux Vs. ROS+Linux+Jailhouse

Next step: full-stack demonstrator for autonomous UAV

Average Overhead

ROS 1 (Kinetic) ~ +3 %
ROS 2 (Ardent) ~ +5 %

Testing on NVidia Jetson TX2

ROS+Linux Vs. ROS+Linux+Jailhouse

https://hipert.unimore.it
Questions?

fabio.federici@utrc.utc.com
giuliomose.mancuso@utrc.utc.com

http://www.utrc.utc.com

This page does not contain any export controlled technical data