Gazebo renders the moon

Ian Chen & Mark Allan

September 29th, 2018

RP Driving ConOps Simulator

Resource Prospector

Goal: send a rover to the moon to mine volatiles such as hydrogen, oxygen and water

Simulation

End-to-end lunar rover driving simulation to assist in the development of the RP Driving Concept of Operations

- ROS used to emulate flight software and ground software functionality
- Simulated rover is 4 wheel steer platform scaled to RP rover dimensions with RP chassis and mast

open

Visual Simulation

Lunar scene from Gazebo

Lunar scene from Apollo 12 mission

Large Scale, High Fidelity Terrain Simulation

Synthetic Terrain Generation

• High resolution (~4cm) to simulate obstacles: positive (rocks), negative (craters)

Large DEMs rendered too slow in Gazebo

- 8K resolution, 213MB
- load time ~5min

Improvements

- Enabled caching of terrain data
- Added Level-Of-Details
- Background tiles coarse meshes
 - o 6 layers

Lunar Appearance

Default shading model inadequate to model the unique reflective properties of lunar surface

Added support for applying custom shaders to heightmaps

Terrain Material Shader Components

Pre-Rendered Shadows

DEM Rock Mask

Real time shadows set up by Gazebo

Shader Parameters

Wheel Tracks Plugin

Camera Exposure

Lens Flares

Sun is few degrees above horizon at lunar pole

Camera often points at sun or sees long dark shadows

Implementation

- Post processing effect
- Works with wide angle cameras
- Sparse ray based occlusion checking

Real Time Shadows

Problem: Poor quality overall esp. when camera view angle is coincident with light direction

Improvements

- Override shadow map generation step
- Increased shadow texture resolution
- Hardware Percentage Closer Filtering + Poisson disk blur filter
- Lowered "built-in ambient" light

WARP

Team

Open Robotics

NASA Ames Intelligent Robotics Group SGT/KBRwyle

Brian Gerkey Ian Chen Steven Peters Morgan Quigley Mark Allan Uland Wong Terry Welsh Michael Furlong Scott McMichael Arno Rogg

Questions?