
ROSCon2018ROSCon2018

Deterministic, asynchronous message
driven task execution with ROS

Brian Cairl

ROSCon2018ROSCon2018

● Motivations
○ Preamble on determinism
○ Drawbacks of a timing-dependence in testability
○ Event-driven software in testing

● Asynchronous event-driven software framework
○ Where synchronization meets ROS abstraction
○ High-level implementation details

Overview

ROSCon2018ROSCon2018

Motivations

ROSCon2018ROSCon2018

● With given inputs, can we make any guarantees about
software outputs and behavior?

● If we “playback” record sensor data/partial state data, can
we get the same outputs as when our software was running
live?

● Why do we care?
○ Incident reproproducability
○ Robustness to timing variations

Preamble: Determinism

ROSCon2018ROSCon2018

To qualify:

● This talk will address algorithmic determinism as a “best
effort” attempt at having some level of reproducibility
between live scenarios and testing

○ Also, reproducibility between offline test cases

● This will not deal with real-time system determinism

Preamble: Determinism

ROSCon2018ROSCon2018

● Typically working with an operating system (e.g. Linux)
which is scheduling events and dealing with
threads/processing

● During runtime:
○ Thread wake up delays
○ Context switching delays
○ Some inherent TCP message transmission and

serialization delay
○ Logging, file IO, etc.

Preamble: A few practical considerations

ROSCon2018ROSCon2018

● We are usually dealing with:

○ Software which is relatively low-frequency (<200 Hz) and
can tolerate some delay (0.1ms - 500ms)

○ a system that is somewhat tolerant to command jitter

Preamble: A few practical considerations

ROSCon2018ROSCon2018

● The host system needs to run fast enough to keep up with
incoming data

● Use diagnostic information to figure out whether or not this
is (nominally) the case
○ Message output rates
○ Difference between wall time and message stamps

Preamble: A few practical considerations

ROSCon2018ROSCon2018

Sensor
Fusion

(50 Hz)

Optical
Filters

(20 Hz)

Perception
Stack

(20 Hz)

Navigation
and

Localization
Stack

(15 Hz)

O
pt

ic
al

Se

ns
or

s
IM

U
s

En
co

d
er

s

Co
nt

ro
l I

np
ut

s

High Level Software Stack (Communicates with ROS)

ROSCon2018ROSCon2018

A ROS Node
Message 1 Callback

Message 2 Callback

Message 3 Callback

Program State Update Callback

In

In

In

Out

Periodic or
message-driven

Update Loop

Node graph
● Cached messages
● /tf

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message 1 Callback

Message 2 Callback

Message 3 Callback

In

In

In
Node graph

class NodeObj
{
Public:
...
 // includes some constructors, init stuff
private:
 ros::Subscriber msg_a_sub;
 MsgA::ConstPtr msg_a;
};

...

{
 // in a method to init things
 sub = nh.subscribe(
 “msg_a”, 10, &NodeObj::callback, this);
}

...

void NodeObj::callback(const MsgA::ConstPtr msg)
{
 this->msg_a = msg;
}

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message 1 Callback

Message 2 Callback

Message 3 Callback

Program State Update Callback

In

In

In

Out

Periodic or
message-driven

Update Loop

ROS Core

class NodeObj
{
...
private:
 ros::Timer updater;
...
 // includes cached messages
};

...

{
 // in a method to init things
 updater = nh.createTimer(
 ros::Duration(.1), &NodeObj::update, this);
}

...

void NodeObj::update(const ros::TimerEvent& evt)
{
 if (this->msg_a && this->msg_b && ...)
 {
 // do a thing
 }
}

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Program State Update Callback

In

In

In

Out

Node graph

Periodic or
message-driven

Update Loop

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Program State Update Callback

In

In

In

Out

Node graph

Periodic or
message-driven

Update Loop

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Program State Update Callback

In

In

In

Out

Node graph

Periodic or
message-driven

Update Loop

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Program State Update Callback

In

In

In

Out

Periodic Update
Loop

Node graph

No strict execution dependence

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Program State Update Callback

In

In

In

Out

Periodic Update
Loop

Node graph

System state and output are dependent on when messages arrived

The polling ROS node

ROSCon2018ROSCon2018

● Can have “zero” delay, since we can output with whatever we have
(besides waiting on /tf)

BUT

● Update (output) rate is decoupled from input data
○ Essentially sampling our inputs
○ Output is dependent on when we sampled

● Cannot be run at or faster than real-time and guarantee the same
results

The polling ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Update Callback

In

In

In

Out

Update on a
synchronization

condition

Node graph

Buffering and
synchronization

Sync. Policy

The event-driven ROS node

ROSCon2018ROSCon2018

A ROS Node

Update Callback

Out

Update on a
synchronization

condition

ROS Core

Buffering and
synchronization

Sync. Policy

Message “A” Callback

Message “B” Callback

Message “C” Callback

In

In

In

bool sync(const MsgA::ConstPtr& msg_a,
 const MsgB::ConstPtr& msg_b,
 ...)
{
 // something that checks
 // ‘msg_a->header.stamp’
 // against
 // ‘msg_b->header.stamp’, etc.
}

The event-driven ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Update Callback

In

In

In

Out

Update on a
synchronization

condition

Node Graph

Buffering and
synchronization

Sync. Policy

Every 0.1 seconds

Every Q seconds

Every 3.1416 seconds

The event-driven ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Update Callback

In

In

In

Out

ROS Core

Buffering and
synchronization

Sync. Policy

Single synchronized data
frame

The event-driven ROS node

ROSCon2018ROSCon2018

A ROS Node
Message “A” Callback

Message “B” Callback

Message “C” Callback

Update Callback

In

In

In

Out

ROS Core

Buffering and
synchronization

Sync. Policy

http://wiki.ros.org/message_filters

The event-driven ROS node

http://wiki.ros.org/message_filters

ROSCon2018ROSCon2018

● Can be robust against message interleaving at runtime, at
the expense of delay

● Delay is passed on from one node to dependent nodes, but
delay can be calculated beforehand

● Running with the same input data will always produce the
same outputs

The event-driven ROS node

ROSCon2018ROSCon2018

● Removes ambiguity about software brittleness under
different timing/system load conditions
○ Repeatable functional tests

● Can run faster than real-time
○ Important for simulation where randomized system

configurations/inputs can be tested quickly

● We can test with real data and be reasonably confident that
we can reproduce errors with said data

Importance in functional testing

ROSCon2018ROSCon2018

● Recorded data could represent conditions
that uncovered an edge case that caused an
incident, e.g.:

○ Robot stuck behind an obstacle

○ Robot didn’t track an important object of interest

● To guarantee that an edge case can be
circumvented, software determinism is key
to guarantee repeatability

System Outputs

Se
ns

or

O
ut

pu
ts

ROS Bag File

Perception Stack
Outputs

Navigation Stack
Outputs

Control Inputs

In
te

rm
ed

ia
te

M

es
sa

ge
s

C
on

tr
ol

In

pu
ts

Importance in functional testing

ROSCon2018ROSCon2018

With an event-driven system:

● We don’t need a ROS core and we
don’t need write ros_test cases

● Make test cases from bag files (see
rosbag API)

● This requires a some extra
architectural considerations

Importance in functional testing

http://wiki.ros.org/rosbag/Code%20API

ROSCon2018ROSCon2018

Flow

An asynchronous, event-driven
framework

ROSCon2018ROSCon2018

● Maintain overarching ROS node-based structure

● Decouple execution portion and communication portion of the
code

● Make execution event-driven (deterministic)

● Support intra/extra node communication

○ Support message injection/production without a ROS core

● Allow multiple execution units (blocks) to run in the same
program, similar to nodelets

Flow Framework: Stated requirements

ROSCon2018ROSCon2018

ROS subscriber
message injection

Sy
nc

hr
on

iz
er

Execution
Callback

Diagnostics Update
Hook

ROS publisher
Message buffer

Driving sync policy

Message buffer

Following sync
policy

ROS subscriber
message injection

ROS publisher

Input Transport
Layer

Abstraction/synchronization block Output Transport
Layer

Flow Framework: Desired unit structure

ROSCon2018ROSCon2018

ROS subscriber
message injection ROS publisher

ROS subscriber
message injection

ROS publisher

Input Transport
Layer

Output Transport
Layer

● Only responsible for pumping messages in and
moving messages out from our abstractions
layer

● Not really dependent on ROS

○ In the case of ROS subscribers, we can
inject/received messages with ROS
callback queue from single thread

○ Replace with ROS2 subs/pubs

○ Directly inject messages from a bag

Flow Framework: Desired unit structure

ROSCon2018ROSCon2018

● Nodes can contain 1 or more blocks

● Blocks run in parallel, each in a separate thread

● Blocks are connected through input and output channels

○ Can interface with ROS or another transport layer

○ Can interface with other blocks

○ Blocks pass messages (or any data type, if intraprocess)

○ Input channels govern synchronization behavior

Flow Framework: Block-based design

ROSCon2018ROSCon2018

R
O

S
 s

ub
sc

rip
tio

ns

R
O

S
 p

ub
lic

at
io

ns

Main thread (ros::spin)

Block 3 (Child Thread)

Block 1 (Child Thread) Block 2 (Child Thread)

Execution CB Execution CB

Execution CB

Flow Framework: Block-based design

ROSCon2018ROSCon2018

Blocks obfuscate parallel design

● Thread execution is driven by incoming data

● Thread will sleep when not executing

● Thread safety is enforced by the wrapping structure

● System design comes down to what the block will execute, and

how its connected to other things

● The connection methods are interchangeable

Flow Framework: Block-based design

ROSCon2018ROSCon2018

● Diagnostic hooks can be
attached to each block, as part
of the block design

● Enables per-task execution
monitoring

Flow Framework: Per block diagnostics

diagnostic_msgs

http://wiki.ros.org/diagnostic_msgs

ROSCon2018ROSCon2018

Sy
nc

hr
on

iz
er

Message buffer

Driving sync policy

Message buffer

Following sync
policy

Message buffer

Following sync
policy

● First input “drives” synchronization

● Additional inputs are synchronized based
on a time range from driving input

● Each sync. policy knows how to deal with
discarding irrelevant data or skipping
frames

● Synchronizer outputs a data frame with
messages for each input channel

Flow Framework: Synchronization behaviors

ROSCon2018ROSCon2018

Sy
nc

hr
on

iz
er

Message buffer

Driving sync policy

Message buffer

Following sync
policy

Message buffer

Following sync
policy

● Synchronization policies are part of the
channel, which determine overall
synchronization behavior

● There are a few extra directives that each
policy can emit to skip or abort on a
synchronization attempt

Flow Framework: Synchronization behaviors

ROSCon2018ROSCon2018

Sy
nc

hr
on

iz
er

Message buffer

Sync Policy 5 6 7 8
9

NewerOlder

1 2 3 40

Channel::inject(TimeType t, PayloadType data)

MyMessage

header
 frame_id
 stamp
 Seq

other_fields...

Flow Framework: Synchronization behaviors

ROSCon2018ROSCon2018

Sy
nc

hr
on

iz
er

Message buffer

Driving sync policy

Message buffer

Following sync
policy

Message buffer

Following sync
policy

On new messages Check buffered
messages w.r.t policy

Not Ready

Ready

t_begin, t_end

Flow Framework: Synchronization behaviors

ROSCon2018ROSCon2018

Sy
nc

hr
on

iz
er

Message buffer

Driving sync policy

Message buffer

Following sync
policy

Message buffer

Following sync
policy

On new messages Check buffered
messages w.r.t policy

Not Ready

On new messages
Check buffered

messages w.r.t policy
and driving time range

Not Ready
t_begin,
t_end

Driver
Ready

Follower
Ready

t_begin,
t_end

Flow Framework: Synchronization behaviors

ROSCon2018ROSCon2018

Sy
nc

hr
on

iz
er

Message buffer

Driving sync policy

Message buffer

Following sync
policy

Message buffer

Following sync
policy

Frame
Driver Messages Follower[0] Messages Follower[N-1] Messages

Execution Callback

Output for
t_end

Flow Framework: Synchronization behaviors

ROSCon2018ROSCon2018

Next-N (sliding window)

● Return latest message, and N-1 messages before, ordered in time
● Synchronize on time range between (N-1)th message stamp and latest message stamp
● Discard oldest message

5 6 7 8 9 10

Newer

6 7 8 9 10 11

iteration 0

iteration 1

Older

Captured

Captured0

iteration 2, 3, ... And so on...

1 2 3 40

2 3 4 51

Flow Framework: Driving input policies

ROSCon2018ROSCon2018

Next-N (without replacement)

● Return latest message, and N-1 messages before, ordered in time
● Synchronize on time range between (N-1)th message stamp and latest message stamp
● Discard all captured messages

5 6 7 8 9 10

Newer

10 11 12 13 14 15

iteration 0

iteration 1

Older

Captured

Captured0...4

iteration 2, 3, ... And so on...

1 2 3 40

6 7 8 95

Flow Framework: Driving input policies

ROSCon2018ROSCon2018

N-Before, M-after

● Return N messages before the earliest driving stamp, and M messages after the latest
stamps

● Invalidate frame if N before cannot be grabbed from the buffer

● Wait for data if M after cannot be cannot be captured

8 9 10

t_endt_begin

0 5 6 71 2 3 4

Flow Framework: Following input policies

ROSCon2018ROSCon2018

Closest Before

● Assumes an input rate, r, and a period of delay, d

● Return closests message before earliest driving time stamp that fallse within (0.5/r) s of this
stamp minus delay period

● Wait if there are only messages earlier than (0.5/r) s

● Discard frame if there are only messages after the earliest driving stamp

8 9 10

t_endt_begin - d

0 5 6 71 2 3 4

0.5 / r

Flow Framework: Following input policies

ROSCon2018ROSCon2018

Latched

● Return latest message that occured before the earliest driving stamp

● If such a messages does not exist, invalidate all frames until earliest driving stamp is older
than latched stamp

Activation

● Same as latched, but returns message only when input data satisfies a particular condition

● Used to dump frames and effectively deactivate a block

Flow Framework: Following input policies

ROSCon2018ROSCon2018

● Using the described input policies, we can “fake” output-driven

events by attaching driving inputs to periodic clock message

publishers

Periodic Clock
Message

Sy
nc

hr
on

iz
er

Execution
Callback

Outputs at
clock rate

Message buffer

Next-1

Flow Framework: Output-driven execution

ROSCon2018ROSCon2018

rosbag topic
injector

Sy
nc

hr
on

iz
er

Execution
Callback rosbag topic writer

Message buffer

Driving sync policy

Message buffer

Following sync
policy

rosbag topic
injector

Test Evaluator rosbag topic writer

Execution portion of our code remains unchanged between test and live software

pass/fail

Flow Framework: Tying back to functional tests

ROSCon2018ROSCon2018

● Deterministic software is critical in testing and reproducing issues

● If software is deterministic, you can have higher confidence in edge-case
avoidance when testing against data from incidents

○ A good way to perform this testing is with rosbag file data

● Flow is a framework built on event-driven execution that with ROS
agnostic message passing in mind

○ In the process to become an open source framework

Summary

