Deterministic, asynchronous message
driven task execution with ROS

Brian Cairl

ROSCon2018 ‘ erbtgh

e Motivations
o Preamble on determinism
o Drawbacks of a timing-dependence in testability
o Event-driven software in testing

e Asynchronous event-driven software framework
o Where synchronization meets ROS abstraction
o High-level implementation details

Overview ROSCon2018 ‘ Vfoeb!'g!‘!

Motivations

ROSCon2018 ‘ ertc

e With given inputs, can we make any guarantees about
software outputs and behavior?

e If we “playback” record sensor data/partial state data, can
we get the same outputs as when our software was running
live?

e Why do we care?
o Incident reproproducability
o Robustness to timing variations

Preamble: Determinism ROSCon2018 ‘ Y fetch

robotics

To qualify:

e This talk will address algorithmic determinism as a “best
effort” attempt at having some level of reproducibility
between live scenarios and testing

o Also, reproducibility between offline test cases

e This will not deal with real-time system determinism

Preamble: Determinism ROSCon2018 ‘ Y fetch

robotics

e Typically working with an operating system (e.g. Linux)
which is scheduling events and dealing with
threads/processing

e During runtime:
o Thread wake up delays

o Context switching delays

o Some inherent TCP message transmission and
serialization delay

o Logging, file 10, etc.

Preamble: A few practical considerations ROSCon2018 ‘ Y fetch

e We are usually dealing with:

o Software which is relatively low-frequency (<200 Hz) and
can tolerate some delay (0.1Tms - 500ms)

o a system that is somewhat tolerant to command jitter

Preamble: A few practical considerations ROSCon2018 ‘ ertch

robotics

e The host system needs to run fast enough to keep up with
incoming data

e Use diagnostic information to figure out whether or not this
is (nominally) the case

o Message output rates
o Difference between wall time and message stamps

Preamble: A few practical considerations ROSCon2018 ‘ ertch

robotics

Encod
ers

e |

Optical
Sensors

l

High Level Software Stack (Communicates with ROS)

-—>

Sensor

Fusion >
—— P (50 Hz)

Optical
Filters

(20 Hz)

Perception
e Stack
- (20 Hz)

Navigation
and
Localization
Stack

(15 Hz)

ROSCon2018 ‘

Control Inputs

fetch

robotics

A ROS Node
Message 1 Callback

Message 2 Callback

/
y
Node graph = - @ Message 3 Callback

e

N
N A

Program State

~

e Cached messages
o Jtf

Periodic or
message-driven
Update Loop

fetch

The polling ROS node

ROSCon2018 ‘

robotics

A ROS Node
m-» Message 1 Callback
1
1
1
1
/ m-» Message 2 Callback
I 7
Iy
17
i
y
Node graph = - @ Message 3 Callback

The polling ROS node

class NodeObj

{
Public:

// includes some constructors, init stuff
private:
ros::Subscriber msg_a_sub;
MsgA: :ConstPtr msg_a;
s

{
// in a method to init things
sub = nh.subscribe(
“msg_a”, 10, &NodeObj::callback, this);

void NodeObj::callback(const MsgA::ConstPtr msg)
{

this->msg_a = msg;

}

fetch

ROSCon2018 ‘

robotics

class NodeObj
{

private:
ros::Timer updater;

// includes cached messages

b

{
// in a method to init things
updater = nh.createTimer (

ros::Duration(.1), &NodeObj::update, this);

void NodeObj::update(const ros::TimerEvent& evt)

{

if (this->msg_a && this->msg_b && ...

{
// do a thing

The polling ROS node

Periodic or
message-driven
Update Loop

Y | [
N A [

- Update Callback -] I

Program State

~

Out

ROSCon2018 ‘ fetch

robotics

A ROS Node Periodic or

message-driven
Message “A” Callback Update Loop

~— I

< Update Callback -« I

Message “B” Callback

Program State

N~

/
y
NOde graph = - @ Message “cu ca"back

The polling ROS node ROSCon2018 ‘ fetch

robotics

A ROS Node Periodic or

message-driven
Message “A” Callback Update Loop

~— I

< Update Callback -« I

Message “B” Callback

Program State

N~

/|
Node graph F - @ Message “C” Callback

The polling ROS node ROSCon2018 ‘ fetch

robotics

A ROS Node

Node graph £ -

e

Message “A” Callback

Message “B” Callback

Y
S

Program State

Message “C” Callback

~

Periodic or
message-driven
Update Loop

The polling ROS node

ROSCon2018 ‘ fetch

robotics

No strict execution dependence

——————|/\
|

Node graph

wm_.}

—
A ROS Node I
m-T Message “A” Callback
1
1 I I
] ! :
! m—» Message “B” Callback
/] ! |
I/I I
i/
y

Message “C” Callback |

h______

Loop

Y
S

Periodic Update I

Program State

|
|

<P Update Callback
|

~

The polling ROS node

ROSCon2018 ‘

fetch

robotics

A ROS Node

System state and output are dependent on when messages arrived

Message “A” Callback

Node graph

Message “B” Callback

Message “C” Callback

N

Program State

S . Update Callback -« |

~

Periodic Update
Loop

The polling ROS node

ROSCon2018 ‘ fetch

robotics

e Can have “zero” delay, since we can output with whatever we have
(besides waiting on /tf)

BUT

e Update (output) rate is decoupled from input data
o Essentially sampling our inputs
o Output is dependent on when we sampled

e Cannot be run at or faster than real-time and guarantee the same
results

The polling ROS node ROSCon2018 ‘ ertch

robotics

A ROS Node

Message “A” Callback = Update on a

synchronization
condition

Buffering and

Message “B” Callback o synchronization

Update Callback

/|
Node graph -~>m]-> Message “C” Callback —>[Sync. Policy]

The event-driven ROS node ROSCon2018 ‘ W

robotics

A ROS Node

m» Message “A” Callback > Update on a

synchronization
condition

> Buffering and

D Update Callback
synchronization

bool sync(const MsgA::ConstPtr& msg_a,
const MsgB: :ConstPtr& msg_b,

ce)
{
// something that checks —»[Sync. Policy]

// ‘msg_a->header.stamp’
// against out ”
// ‘msg_b->header.stamp’, etc.

The event-driven ROS node ROSCon2018 ‘ fetch

robotics

A ROS Node

Every 0.1 seconds

Message “A” Callback

Every Q seconds

Node Graph

Message “B” Callback

Every 3.1416 seconds

Message “C” Callback

Buffering and
synchronization

[Sync. Policy]

Update on a
synchronization
condition

Update Callback

The event-driven ROS node

ROSCon2018 ‘ fetch

robotics

Single synchronized data
frame

A ROS Node

Message “A” Callback =

Buffering and
synchronization

y
ROS Core F - sm-» Message “C” Callback = [Sync. Policy]

Message “B” Callback = Update Callback

The event-driven ROS node ROSCon2018 ‘ fetch

robotics

A ROS Node
Message “A” Callback =

Buffering and
synchronization

y
ROS Core F - bm-» Message “C” Callback —b[Sync. Policy]

‘ http://wiki.ros.org/message_filters }—

Message “B” Callback = Update Callback

The event-driven ROS node ROSCon2018 ‘ fetch

robotics

http://wiki.ros.org/message_filters

e Can be robust against message interleaving at runtime, at
the expense of delay

e Delay is passed on from one node to dependent nodes, but
delay can be calculated beforehand

e Running with the same input data will always produce the
same outputs

The event-driven ROS node ROSCon2018 ‘ Y fetch

robotics

e Removes ambiguity about software brittleness under
different timing/system load conditions

o Repeatable functional tests

e Can run faster than real-time
o Important for simulation where randomized system
configurations/inputs can be tested quickly

e We can test with real data and be reasonably confident that
we can reproduce errors with said data

Importance in functional testing ROSCon2018 ‘ ertCh

robotics

e Recorded data could represent conditions
that uncovered an edge case that caused an

) . ROS Bag File
incident, e.g.:
§ z._ > Control Inputs H

o Robot stuck behind an obstacle —_

o Robot didn't track an important object of interest ¢, System Outputs | | |
T h d b = Navigation Stack
Outputs L
® O guarantee that an edge casg qan .e v R
circumvented, software determinism is key 3t | =
to guarantee repeatability “° o |
|

Importance in functional testing ROSCon2018 ‘ fetch

robotics

With an event-driven system:

\
e We don't need a ROS core and we / b *A
don’t need write ros_test cases /)
e Make test cases from bag files (see
rosbagAP) [gy
i o

e This requires a some extra
architectural considerations 1 =

Importance in functional testing ROSCon2018 ‘ Y- fetcl

S

http://wiki.ros.org/rosbag/Code%20API

Flow

An asynchronous, event-driven
framework

ROSCon2018 ‘ ertCh

robotics

e Maintain overarching ROS node-based structure

e Decouple execution portion and communication portion of the
code

e Make execution event-driven (deterministic)
e Support intra/extra node communication
o Support message injection/production without a ROS core

e Allow multiple execution units (blocks) to run in the same
program, similar to nodelets

Flow Framework: Stated requirements ROSCon2018 ‘ Y fetch

robotics

Input Transport
Layer

Abstraction/synchronization block

ROS subscriber |
message injection

ROS subscriber |
message injection

Flow Framework: Desired unit structure

)
4 N
[Message buffer]
[Driving sync policy] E
= Execution
2 el Callback
2
Message buffer >
[)| | 2
Following sync ~ j
policy i Diagnostics Update

- Hook

~

Output Transport
Layer

J—{ ROS publisher]

>[ROS publisher]

ROSCon2018 ‘ fetch

robotics

Input Transport e Only responsible for pumping messages in and Output Transport
Layer moving messages out from our abstractions Layer
layer

ROS subscriber .
[message injection J e Not really dependent on ROS [ROS publisher J

< o In the case of ROS subscribers, we can j‘>

inject/received messages with ROS
J callback queue from single thread

ROS subscriber
message injection

o Replace with ROS2 subs/pubs [ROS publisher J

o Directly inject messages from a bag

Flow Framework: Desired unit structure ROSCon2018 ‘ fetch

robotics

e Nodes can contain 1 or more blocks

e Blocks runin parallel, each in a separate thread

e Blocks are connected through input and output channels
o Can interface with ROS or another transport layer
o Can interface with other blocks
o Blocks pass messages (or any data type, if intraprocess)

o Input channels govern synchronization behavior

Flow Framework: Block-based design ROSCon2018 ‘ ertCh

robotics

)
Block 1 (Child Thread) Block 2 (Child Thread)
P TR — >
2 [Execution CB] \ [Execution CB] o
ko) 5
= AN 3
3 \ 2
n \ 8
% | Block 3 (Child Thread) &
—>>
- [Execution CB]
~) Main thread (ros::spin) ()

Flow Framework: Block-based design ROSCon2018 ‘ fethh

Blocks obfuscate parallel design
e Thread execution is driven by incoming data

e Thread will sleep when not executing
e Thread safety is enforced by the wrapping structure

e System design comes down to what the block will execute, and

how its connected to other things

e The connection methods are interchangeable

Flow Framework: Block-based design ROSCon2018 ‘ ertCh

robotics

/Detection/PointCloudDynamicObstacleDetectorBlock

Full Name: /Detection/PointCloudDynamicObstacleDetectorBlock
Component: PointCloudDynamicObstacleDetectorBlock
Hardware ID: 140674271803136

Level: OK

Message: working

. D i a n OSt i C h OO kS C a n be Process: carl-carrack_ros-navigation-navigation_core_node
g Runner State: RUNNING
Latest captured stamps: 1537752972.145480394
1537752972.148813725 1537752972.142097436

attached to each block, as part GO e s

Execution Count: 622
. Abort Count: 168
Of the bIOCk deSIgn Result Timeout Count: 0

Exceeded Max Latency Count: 0
Exceeded Execution Time Count: 0
Exceeded Update Time Count: 0
Latency Upper Bound (s): 0.055781572
Latency Lower Bound (s): 0.050373062
Latency Average (s): 0.050634053
Execution Time Upper Bound (s): 0.016310217

M Execution Time Lower Bound (s): 0.001922457

e Enables per-tas k execution Exedics e Bt gt (e A3

Update Time Upper Bound (s): 0.080476247
Update Time Lower Bound (s): 0.056454873

m O n ito ri n g |l.lpdal:e Time Average (s): 0.066650812

<—old new-—>

EEEEEEEEEEEEEEEEEEEEEEEEENEEES Pause

Snapshot

diagnostic _msgs

Flow Framework: Per block diagnostics ROSCon2018 ‘ fetch

robotics

http://wiki.ros.org/diagnostic_msgs

0

Message buffer

)

\

[Driving sync policy J

\2

N

/)

[

Message buffer

)

(

Following sync
policy

-

J

Message buffer

N\ ()

Following sync
policy

-
-

Synchronizer

First input “drives” synchronization

Additional inputs are synchronized based
on a time range from driving input

Each sync. policy knows how to deal with
discarding irrelevant data or skipping
frames

Synchronizer outputs a data frame with
messages for each input channel

Flow Framework: Synchronization behaviors ROSCon2018 ‘ ertch

robotics

1 N () . .
[Mossage buter) e Synchronization policies are part of the

Driving sync policy

R J) channel, which determine overall
synchronization behavior

N
/)

[Message buffer]

Following sync .
policy
/

-

Synchronizer

e There are a few extra directives that each
E N]}_» policy can emit to skip or abort on a

synchronization attempt

policy

{ Following sync J

Flow Framework: Synchronization behaviors ROSCon2018 ‘ ertch

robotics

Message buffer Older Newer
- \ h
Syne Policy o|1|2|3|4|5 |6 |7]|8
. ‘9
® o
® N |
5
£ Channel::inject(TimeType t, PayloadType data)
e
Sy || e M ____
n . MyMessage
Eheader
frame_id
stamp
Seq
— 1
. other_fields...

Flow Framework: Synchronization behaviors ROSCon2018 ‘ fetch

robotics

Not Ready

f 1 e N *
l Message buffer '
—> Check buffered
. . On new messages :
Driving sync policy 9 messages w.r.t policy
\
[Message buffer | o Ready
N
Following sync . g
policy - .
N\,) i t_begin, t_end
c
® >
e (70}
[J
[Message buffer]
Following sync
policy
(. J

Flow Framework: Synchronization behaviors ROSCon2018 ‘ fetch

robotics

Not Ready

(1 (N\ *
l Message buffer '
—> Check buffered
O M MESEEEEE messages w.r.t policy
Q
r[Message buffer P E; t_begin,
» = Not Read
Following sync g Y t_end
policy .E *
e 8 Check buffered
® u>>’ On new messages messages W.r.t policy re———
e and driving time range
[Message buffer | P t_begin,
Following sync ® t_end
policy ®
4

Driver
Ready

Follower
Ready

Flow Framework: Synchronization behaviors

ROSCon2018 ‘ fetch

robotics

(¢)
[Message buffer]
_>
Driving sync policy v
NG .
q Message buffer]\ o rame
2 .g Driver Messages Follower[0] Messages == Follower[N-1] Messages
Following sync . g
policy .E
2 J 8
) S .
L (7)) Execution Callback
@
[Message buffer] *
Following sync Output for
policy t_end

Flow Framework: Synchronization behaviors ROSCon2018 ‘ fetch

robotics

Next-N (sliding window)

e Return latest message, and N-1 messages before, ordered in time
e Synchronize on time range between (N-1)th message stamp and latest message stamp
e Discard oldest message

_Older Newer
lteration O o|l1]|2|3]4]|5|6|7 8|9 |10Ff--
Captured
iteration 1
1 2 3 4 5 6 7 8 9 10 | 11 p = =
|
Captured
iteration 2, 3, ... And so on...

Flow Framework: Driving input policies ROSCon2018 ‘ fetch

robotics

Next-N (without replacement)

e Return latest message, and N-1 messages before, ordered in time
e Synchronize on time range between (N-1)th message stamp and latest message stamp
e Discard all captured messages

_Older Newer
ISR ol1]l23|l4|l5|6 |7]| 8|9/ |10Fs=s:
Captured
iteration 1
j5 6 7 8 9 10 [11 [12 [13 | 14 | 15 p = =
0.4 Captured
iteration 2, 3, ... And so on...

Flow Framework: Driving input policies ROSCon2018 ‘ fetch

robotics

N-Before, M-after

e Return N messages before the earliest driving stamp, and M messages after the latest
stamps

e |nvalidate frame if N before cannot be grabbed from the buffer

e Wait for data if M after cannot be cannot be captured

Flow Framework: Following input policies ROSCon2018 ‘ febtph

Closest Before
e Assumes an input rate, r, and a period of delay, d

e Return closests message before earliest driving time stamp that fallse within (0.5/r) s of this
stamp minus delay period

e Wait if there are only messages earlier than (0.5/r) s

e Discard frame if there are only messages after the earliest driving stamp

t_begin - d. t_end

I
I I
e >

3]

Flow Framework: Following input policies ROSCon2018 ‘ fetch

robotics

Latched

e Return latest message that occured before the earliest driving stamp

e [f such a messages does not exist, invalidate all frames until earliest driving stamp is older
than latched stamp

Activation

e Same as latched, but returns message only when input data satisfies a particular condition

e Used to dump frames and effectively deactivate a block

Flow Framework: Following input policies ROSCon2018 ‘ fetch

robotics

e Using the described input policies, we can “fake” output-driven

events by attaching driving inputs to periodic clock message

publishers

Periodic Clock) [E-ES -
' M [])
Next-1 N
c .
o > Execution Outputs at
® ® -g Callback clock rate
@ ® > c
- >
[J [J 73

Flow Framework: Output-driven execution ROSCon2018 ‘ Y fetch

robotics

Execution portion of our code remains unchanged between test and live software

C N\ R
- [Message buffer]
[rosbag topic
injeCtor { Driving sync policy J 'q',
N
.cE> Execution
= >[rosbag topic writer]
-§ Callback :
N [Message buffer] >
rosbag topic "n I
injector [Following sync J |
policy I
L J (. J I
v
pass/fail <@ Test Evaluator H rosbag topic writer]

Flow Framework: Tying back to functional tests RosCon2018 ‘ ertCh

robotics

o Deterministic software is critical in testing and reproducing issues

e If software is deterministic, you can have higher confidence in edge-case
avoidance when testing against data from incidents

o A good way to perform this testing is with rosbag file data

e Flow is a framework built on event-driven execution that with ROS
agnostic message passing in mind

o In the process to become an open source framework

Summary ROSCon2018 ‘ Y fetch

robotics

