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e Motivations
o Preamble on determinism
o Drawbacks of a timing-dependence in testability
o Event-driven software in testing

e Asynchronous event-driven software framework
o Where synchronization meets ROS abstraction
o High-level implementation details
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e With given inputs, can we make any guarantees about
software outputs and behavior?

e If we “playback” record sensor data/partial state data, can
we get the same outputs as when our software was running
live?

e Why do we care?
o Incident reproproducability
o Robustness to timing variations
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To qualify:

e This talk will address algorithmic determinism as a “best
effort” attempt at having some level of reproducibility
between live scenarios and testing

o Also, reproducibility between offline test cases

e This will not deal with real-time system determinism
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e Typically working with an operating system (e.g. Linux)
which is scheduling events and dealing with
threads/processing

e During runtime:
o Thread wake up delays

o Context switching delays

o Some inherent TCP message transmission and
serialization delay

o Logging, file 10, etc.
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e We are usually dealing with:

o Software which is relatively low-frequency (<200 Hz) and
can tolerate some delay (0.1Tms - 500ms)

o a system that is somewhat tolerant to command jitter
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e The host system needs to run fast enough to keep up with
incoming data

e Use diagnostic information to figure out whether or not this
is (nominally) the case

o Message output rates
o Difference between wall time and message stamps
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class NodeObj

{
Public:

// includes some constructors, init stuff
private:
ros::Subscriber msg_a_sub;
MsgA: :ConstPtr msg_a;
s

{
// in a method to init things
sub = nh.subscribe(
“msg_a”, 10, &NodeObj::callback, this);

void NodeObj::callback(const MsgA::ConstPtr msg)
{

this->msg_a = msg;

}
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class NodeObj
{

private:
ros::Timer updater;

// includes cached messages

b

{
// in a method to init things
updater = nh.createTimer (

ros::Duration(.1), &NodeObj::update, this);

void NodeObj::update(const ros::TimerEvent& evt)

{

if (this->msg_a && this->msg_b && ...

{
// do a thing
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No strict execution dependence
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A ROS Node

System state and output are dependent on when messages arrived
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e Can have “zero” delay, since we can output with whatever we have
(besides waiting on /tf)

BUT

e Update (output) rate is decoupled from input data
o Essentially sampling our inputs
o Output is dependent on when we sampled

e Cannot be run at or faster than real-time and guarantee the same
results
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A ROS Node

m» Message “A” Callback > Update on a

synchronization
condition

> Buffering and

D Update Callback
synchronization

bool sync(const MsgA::ConstPtr& msg_a,
const MsgB: :ConstPtr& msg_b,

ce)
{
// something that checks —»[ Sync. Policy ]

// ‘msg_a->header.stamp’
// against out ”
// ‘msg_b->header.stamp’, etc.
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Single synchronized data
frame
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A ROS Node
Message “A” Callback =

Buffering and
synchronization

y
ROS Core F - bm-» Message “C” Callback —b[ Sync. Policy ]

‘ http://wiki.ros.org/message_filters }—

Message “B” Callback = Update Callback
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e Can be robust against message interleaving at runtime, at
the expense of delay

e Delay is passed on from one node to dependent nodes, but
delay can be calculated beforehand

e Running with the same input data will always produce the
same outputs
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e Removes ambiguity about software brittleness under
different timing/system load conditions

o Repeatable functional tests

e Can run faster than real-time
o Important for simulation where randomized system
configurations/inputs can be tested quickly

e We can test with real data and be reasonably confident that
we can reproduce errors with said data
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e Recorded data could represent conditions
that uncovered an edge case that caused an

) . ROS Bag File
incident, e.g.:
§ z._ > Control Inputs H

o Robot stuck behind an obstacle —_

o Robot didn't track an important object of interest ¢, System Outputs | | |
T h d b = Navigation Stack
Outputs L
® O guarantee that an edge casg qan .e v R
circumvented, software determinism is key 3t | =
to guarantee repeatability “° o |
|
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With an event-driven system:

\
e We don't need a ROS core and we / b *A
don’t need write ros_test cases / )
e Make test cases from bag files (see
rosbagAP) [ gy
i o

e This requires a some extra
architectural considerations 1 =
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http://wiki.ros.org/rosbag/Code%20API

Flow

An asynchronous, event-driven
framework
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e Maintain overarching ROS node-based structure

e Decouple execution portion and communication portion of the
code

e Make execution event-driven (deterministic)
e Support intra/extra node communication
o Support message injection/production without a ROS core

e Allow multiple execution units (blocks) to run in the same
program, similar to nodelets
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Flow Framework: Desired unit structure
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Input Transport e Only responsible for pumping messages in and Output Transport
Layer moving messages out from our abstractions Layer
layer

ROS subscriber .
[ message injection J e Not really dependent on ROS [ ROS publisher J

< o In the case of ROS subscribers, we can j‘>

inject/received messages with ROS
J callback queue from single thread

ROS subscriber
message injection

o Replace with ROS2 subs/pubs [ ROS publisher J

o Directly inject messages from a bag

Flow Framework: Desired unit structure ROSCon2018 ‘ fetch

robotics



e Nodes can contain 1 or more blocks

e Blocks runin parallel, each in a separate thread

e Blocks are connected through input and output channels
o Can interface with ROS or another transport layer
o Can interface with other blocks
o Blocks pass messages (or any data type, if intraprocess)

o Input channels govern synchronization behavior
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Blocks obfuscate parallel design
e Thread execution is driven by incoming data

e Thread will sleep when not executing
e Thread safety is enforced by the wrapping structure

e System design comes down to what the block will execute, and

how its connected to other things

e The connection methods are interchangeable
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/Detection/PointCloudDynamicObstacleDetectorBlock

Full Name: /Detection/PointCloudDynamicObstacleDetectorBlock
Component: PointCloudDynamicObstacleDetectorBlock
Hardware ID: 140674271803136

Level: OK

Message: working

. D i a n OSt i C h OO kS C a n be Process: carl-carrack_ros-navigation-navigation_core_node
g Runner State: RUNNING
Latest captured stamps: 1537752972.145480394
1537752972.148813725 1537752972.142097436

attached to each block, as part GO e s

Execution Count: 622
. Abort Count: 168
Of the bIOCk deSIgn Result Timeout Count: 0

Exceeded Max Latency Count: 0
Exceeded Execution Time Count: 0
Exceeded Update Time Count: 0
Latency Upper Bound (s): 0.055781572
Latency Lower Bound (s): 0.050373062
Latency Average (s): 0.050634053
Execution Time Upper Bound (s): 0.016310217

M Execution Time Lower Bound (s): 0.001922457

e Enables per-tas k execution Exedics e Bt gt (e A3

Update Time Upper Bound (s): 0.080476247
Update Time Lower Bound (s): 0.056454873

m O n ito ri n g |l.lpdal:e Time Average (s): 0.066650812

<—old new-—>

EEEEEEEEEEEEEEEEEEEEEEEEENEEES Pause

Snapshot

diagnostic _msgs
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Synchronizer

First input “drives” synchronization

Additional inputs are synchronized based
on a time range from driving input

Each sync. policy knows how to deal with
discarding irrelevant data or skipping
frames

Synchronizer outputs a data frame with
messages for each input channel
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1 N () . .
[ Mossage buter ) e Synchronization policies are part of the

Driving sync policy

R J) channel, which determine overall
synchronization behavior

N
/)

[ Message buffer ]

Following sync .
policy
/

-

Synchronizer

e There are a few extra directives that each
E N ]}_» policy can emit to skip or abort on a

synchronization attempt

policy

{ Following sync J
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- \ h
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. ‘9
® o
® N |
5
£ Channel::inject(TimeType t, PayloadType data)
e
Sy || e M ____
n . MyMessage
Eheader
frame_id
stamp
Seq
— 1
. other_fields...

Flow Framework: Synchronization behaviors ROSCon2018 ‘ fetch

robotics



Not Ready

f 1 e N *
l Message buffer '
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Not Ready

( 1 ( N\ *
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O M MESEEEEE messages w.r.t policy
Q
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» = Not Read
Following sync g Y t_end
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Next-N (sliding window)

e Return latest message, and N-1 messages before, ordered in time
e Synchronize on time range between (N-1)th message stamp and latest message stamp
e Discard oldest message

_Older Newer
lteration O o|l1]|2|3]4]|5|6|7 8|9 |10Ff--
Captured
iteration 1
1 2 3 4 5 6 7 8 9 10 | 11 p = =
|
Captured
iteration 2, 3, ... And so on...
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Next-N (without replacement)

e Return latest message, and N-1 messages before, ordered in time
e Synchronize on time range between (N-1)th message stamp and latest message stamp
e Discard all captured messages

_Older Newer
ISR ol1]l23|l4|l5|6 |7 ]| 8|9/ |10Fs=s:
Captured
iteration 1
j5 6 7 8 9 10 [ 11 [ 12 [ 13 | 14 | 15 p = =
0.4 Captured
iteration 2, 3, ... And so on...
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N-Before, M-after

e Return N messages before the earliest driving stamp, and M messages after the latest
stamps

e |nvalidate frame if N before cannot be grabbed from the buffer

e Wait for data if M after cannot be cannot be captured

Flow Framework: Following input policies ROSCon2018 ‘ febtph




Closest Before
e Assumes an input rate, r, and a period of delay, d

e Return closests message before earliest driving time stamp that fallse within (0.5/r) s of this
stamp minus delay period

e Wait if there are only messages earlier than (0.5/r) s

e Discard frame if there are only messages after the earliest driving stamp

t_begin - d. t_end

I
I I
e >

3]
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Latched

e Return latest message that occured before the earliest driving stamp

e [f such a messages does not exist, invalidate all frames until earliest driving stamp is older
than latched stamp

Activation

e Same as latched, but returns message only when input data satisfies a particular condition

e Used to dump frames and effectively deactivate a block

Flow Framework: Following input policies ROSCon2018 ‘ fetch
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e Using the described input policies, we can “fake” output-driven

events by attaching driving inputs to periodic clock message

publishers

Periodic Clock ) [E-ES -
' M [ ] )
Next-1 N
c .
o > Execution Outputs at
® ® -g Callback clock rate
@ ® > c
- >
[ J [ J 73
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Execution portion of our code remains unchanged between test and live software

C N\ R
- [ Message buffer ]
[ rosbag topic
injeCtor { Driving sync policy J 'q',
N
.cE> Execution
= >[ rosbag topic writer]
-§ Callback :
N [ Message buffer ] >
rosbag topic "n I
injector [ Following sync J |
policy I
L J (. J I
v
pass/fail <@ Test Evaluator H rosbag topic writer ]
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o Deterministic software is critical in testing and reproducing issues

e If software is deterministic, you can have higher confidence in edge-case
avoidance when testing against data from incidents

o A good way to perform this testing is with rosbag file data

e Flow is a framework built on event-driven execution that with ROS
agnostic message passing in mind

o In the process to become an open source framework
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